Atjaunināt sīkdatņu piekrišanu

Probability Theory I: Random Variables and Distributions 2024 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 382 pages, height x width: 235x155 mm, 16 Illustrations, color; 8 Illustrations, black and white; XXI, 382 p. 24 illus., 16 illus. in color., 1 Paperback / softback
  • Sērija : UNITEXT 165
  • Izdošanas datums: 19-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031631897
  • ISBN-13: 9783031631894
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 51,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 60,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 382 pages, height x width: 235x155 mm, 16 Illustrations, color; 8 Illustrations, black and white; XXI, 382 p. 24 illus., 16 illus. in color., 1 Paperback / softback
  • Sērija : UNITEXT 165
  • Izdošanas datums: 19-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031631897
  • ISBN-13: 9783031631894
Citas grāmatas par šo tēmu:

This book provides a concise yet rigorous introduction to probability theory. Among the possible approaches to the subject, the most modern approach based on measure theory has been chosen: although it requires a higher degree of mathematical abstraction and sophistication, it is essential to provide the foundations for the study of more advanced topics such as stochastic processes, stochastic differential calculus and statistical inference. The text originated from the teaching experience in probability and applied mathematics courses within the mathematics degree program at the University of Bologna; it is suitable for second- or third-year students in mathematics, physics, or other natural sciences, assuming multidimensional differential and integral calculus as a prerequisite. The four chapters cover the following topics: measures and probability spaces; random variables; sequences of random variables and limit theorems; and expectation and conditional distribution. The text includes a collection of solved exercises.

1 Measures and probability spaces.- 2 Random variables.- 3 Sequences of
random variables.- 4 Conditional probability.- 5 Summary exercises.- Appendix
A: Dynkins theorems.- Appencix B: Absolute continuity.- Appendix C: Uniform
integrability.
Andrea Pascucci is a professor of Probability and Mathematical Statistics at the Alma Mater Studiorum University of Bologna. His research activity encompasses various aspects of the theory of stochastic differential equations for diffusions and jump processes, degenerate partial differential equations, and their applications to mathematical finance. He has authored 6 books and over 80 scientific articles on the following topics: linear and nonlinear Kolmogorov-Fokker-Planck equations; regularity and asymptotic estimates of transition densities for multidimensional diffusions and jump processes; free boundary problems, optimal stopping, and applications to American-style financial derivatives; Asian options and volatility models. He has been invited as a speaker at more than 40 international conferences. He serves as an editor for the Journal of Computational Finance and is the director of a postgraduate program in Mathematical Finance at the University of Bologna.