Atjaunināt sīkdatņu piekrišanu

E-grāmata: Problems And Solutions In Group Theory For Physicists

(Academia Sinica, China), (Chinese Academy Of Sciences, China)
  • Formāts: 476 pages
  • Izdošanas datums: 04-Jun-2004
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814482769
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 20,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 476 pages
  • Izdošanas datums: 04-Jun-2004
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814482769
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Ma and Gu, both affiliated with the Institute of High Energy Physics in China, explain fundamentals of group theory. A beginning chapter reviews linear algebra, and subsequent chapters cover the concepts of a group and its subsets, the theory of representations of a group, and three-dimensional rotation groups. The remainder of the book is devoted to properties of some important symmetry groups of physical systems. Numerous exercises and solutions are included. The book is aimed at graduate students in physics who are studying group theory and its application to physics. It is also suitable for graduate students in theoretical chemistry. Annotation ©2004 Book News, Inc., Portland, OR (booknews.com)
Preface v
1. REVIEW ON LINEAR ALGEBRAS
1(26)
1.1 Eigenvalues and Eigenvectors of a Matrix
1(3)
1.2 Some Special Matrices
4(3)
1.3 Similarity Transformation
7(20)
2. GROUP AND ITS SUBSETS
27(16)
2.1 Definition of a Group
27(2)
2.2 Subsets in a Group
29(4)
2.3 Homomorphism of Groups
33(10)
3. THEORY OF REPRESENTATIONS
43(72)
3.1 Transformation Operators for a Scalar Function
43(4)
3.2 Inequivalent and Irreducible Representations
47(18)
3.3 Subduced and Induced Representations
65(14)
3.4 The Clebsch-Gordan Coefficients
79(36)
4. THREE-DIMENSIONAL ROTATION GROUP
115(58)
4.1 SO(3) Group and Its Covering Group SU(2)
115(8)
4.2 Inequivalent and Irreducible Representations
123(17)
4.3 Lie Groups and Lie Theorems
140(6)
4.4 Irreducible Tensor Operators
146(20)
4.5 Unitary Representations with Infinite Dimensions
166(7)
5. SYMMETRY OF CRYSTALS
173(20)
5.1 Symmetric Operations and Space Groups
173(4)
5.2 Symmetric Elements
177(9)
5.3 International Notations for Space Groups
186(7)
6. PERMUTATION GROUPS
193(76)
6.1 Multiplication of Permutations
193(4)
6.2 Young Patterns, Young Tableaux and Young Operators
197(8)
6.3 Primitive Idempotents in the Group Algebra
205(6)
6.4 Irreducible Representations and Characters
211(26)
6.5 The Inner and Outer Products of Representations
237(32)
7. LIE GROUPS AND LIE ALGEBRAS
269(48)
7.1 Classification of Semisimple Lie Algebras
269(10)
7.2 Irreducible Representations and the Chevalley Bases
279(20)
7.3 Reduction of the Direct Product of Representations
299(18)
8. UNITARY GROUPS
317(58)
8.1 The SU(N) Group and Its Lie Algebra
317(4)
8.2 Irreducible Tensor Representations of SU(N)
321(15)
8.3 Orthonormal Bases for Irreducible Representations
336(26)
8.4 Subduced Representations
362(7)
8.5 Casimir Invariants of SU(N)
369(6)
9. REAL ORTHOGONAL GROUPS
375(58)
9.1 Tensor Representations of SO(N)
375(28)
9.2 Spinor Representations of SO(N)
403(12)
9.3 SO(4) Group and the Lorentz Group
415(18)
10. THE SYMPLECTIC GROUPS 433(24)
10.1 The Groups Sp(2l, R) and USp(2l)
433(7)
10.2 Irreducible Representations of Sp(2l)
440(17)
Bibliography 457(4)
Index 461