Atjaunināt sīkdatņu piekrišanu

Proceedings of the 20th International Ship and Offshore Structures Congress Issc 2018: Technical Committee Reports, 1

  • Cena: 209,55 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Preface v
Mirek Kaminski
Philippe Rigo
Committee I.1 Environment 1(100)
Thomas Fu
Alexander Babanin
Abderrahim Bentamy
Ricardo Campos
Sheng Dong
Odin Gramstad
Geert Kapsenberg
Wengang Mao
Ryuji Miyake
Alan John Murphy
Fredhi Prasetyo
Wei Qiu
Luis Sagrillo
1 Introduction
4(12)
1.1 Applications
4(9)
1.1.1 Design
4(3)
1.1.2 Operation
7(6)
1.2 Waves
13(1)
1.3 Wind
14(1)
1.4 Climate
15(1)
1.4.1 Increasing uncertainty and risk due to climate change
15(1)
1.4.2 Sea Level Rise
15(1)
2 Long Term Statistics And Extreme Value Analysis
16(8)
2.1 Long Term Measurements and Data
18(2)
2.2 Wave Climatology
20(1)
2.3 Climate Trends and Uncertainty
21(1)
2.4 More measurement in extreme conditions
22(2)
3 Waves & Swell
24(19)
3.1 Measurements/Data
24(5)
3.1.1 Deterministic wave generation in the laboratory
24(2)
3.1.2 Measurement and analysis
26(2)
3.1.3 Particle Image Velocimetry
28(1)
3.2 Rogue Waves
29(3)
3.3 Analytical & Numerical Models
32(10)
3.3.1 Spectral
33(3)
3.3.2 Phase Resolved
36(3)
3.3.3 Short Term Stochastic/Probabilistic/Machine Learning
39(3)
3.4 Tropical & Extratropical Cyclones
42(1)
4 Currents
43(4)
4.1 Measurements/Data
45(1)
4.1.1 In-situ current measurements
45(1)
4.1.2 Remotely sensed current measurements
46(1)
4.2 Analytical & Numerical Models
46(1)
5 Wind
47(7)
5.1 Current State of the Art
48(4)
5.2 Accuracy Issues
52(1)
5.3 Measurements/Data
52(1)
5.4 Analytical & Numerical Methods
53(1)
6 Ice/Icebergs
54(8)
6.1 Measurements/Data
54(4)
6.1.1 Space-borne Measurements
54(1)
6.1.2 Airborne Measurements
55(1)
6.1.3 Ice Management Trials
55(1)
6.1.4 Subsea Measurements
56(1)
6.1.5 Icebergs
56(1)
6.1.6 Thermodynamics
57(1)
6.2 Ice-Structure Interaction
58(2)
6.2.1 Sea Ice
58(1)
6.2.2 Laboratory Testing
59(1)
6.2.3 Iceberg Loading
59(1)
6.2.4 Ice Hydrodynamics
59(1)
6.2.5 Ice Accretion
60(1)
6.3 Analytical & Numerical Models
60(2)
7 Coupled Phenomena
62(9)
7.1 Wave Breaking
62(1)
7.2 Wave-current interactions
63(2)
7.3 Wave-ice interactions
65(1)
7.4 Atmospheric wave boundary layer
66(2)
7.5 Wave influences in the upper ocean
68(2)
7.6 Waves in large-scale air-system - climate
70(1)
8 Uncertainty
71(2)
8.1 Uncertainty in prediction models
71(1)
8.2 Uncertainty in measurements
72(1)
8.3 Challenges in uncertainty quantification
73(1)
9 Special Topics
73(3)
9.1 Future Trends
73(3)
9.1.1 Big Data
73(3)
10 Conclusions
76(1)
10.1 Summary
76(1)
10.2 Recommendations
76(1)
10.3 Advances
77(1)
References
77(24)
Committee I.2 Loads 101(70)
Yoshitaka Ogawa
Wei Bai
Guillaume de Hauteclocque
Sharad Dhavalikar
Chih-Chung Fang
Nuno Fonseca
Satu Hanninen
Thomas B. Johannessen
Van Lien
Celso Morooka
Holger Mumm
Jasna Prpic-Orsic
Kang Hyun Song
Chao Tian
Bahadir Ugurlu
Sue Wang
1 Introduction
103(1)
2 Computation Of Wave-Induced Loads
103(10)
2.1 Zero-Speed Case
104(4)
2.1.1 Body-wave interactions
104(1)
2.1.2 Body-wave-current interactions
105(1)
2.1.3 Multibody interactions
106(2)
2.2 Forward-Speed Case
108(3)
2.3 Hydroelasticity Methods
111(2)
2.3.1 Hydroelasticity methods of ships
111(2)
2.3.2 Hydroelasticity methods of VLFS
113(1)
3 Ship Structures - Specialist Topics
113(12)
3.1 Slamming and Whipping
113(3)
3.2 Sloshing
116(5)
3.2.1 Introduction
116(1)
3.2.2 Experimental Investigations
116(1)
3.2.3 Numerical Simulation
117(1)
3.2.4 Sloshing Suppression
118(1)
3.2.5 Sloshing and Ship Motions
119(2)
3.3 Green Water
121(1)
3.4 Experimental and Full Scale Measurements
122(2)
3.5 Loads due to Damage following Collision/Grounding
124(1)
4 Offshore Structures - Specialist Topics
125(14)
4.1 Vortex-induced vibrations (VIV) and Vortex-induced motions (VIM)
125(5)
4.1.1 VIV
125(3)
4.1.2 VIM
128(2)
4.2 Mooring Systems
130(3)
4.3 Lifting operations
133(2)
4.4 Wave-in-deck loads
135(2)
4.5 Floating Offshore Wind Turbines
137(2)
5 Probabilistic Modelling Of Loads On Ships
139(5)
5.1 Probabilistic Methods
139(2)
5.2 Equivalent Design Waves
141(1)
5.3 Design Load Cases and Ultimate Strength
142(2)
6 Fatigue Loads For Ships
144(3)
7 Uncertainty Analysis
147(2)
7.1 Load uncertainties
147(1)
7.2 Uncertainties in Loading conditions
148(1)
7.3 Uncertainties due to operational factor
149(1)
8 Conclusions
149(2)
References
151(20)
Committee II.1 Quasi-Static Response 171(84)
J.W. Ringsberg
J. Andric
S.E. Heggelund
N. Homma
Y.T. Huang
B.S. Jang
J. Jelovica
Y. Kawamura
P. Lara
M. Sidari
J.M. Underwood
J. Wang
D. Yang
1 Introduction
174(2)
1.1 General introduction to strength assessment approaches
175(1)
2 Load Modelling
176(10)
2.1 Operational/design loads
177(3)
2.1.1 Wave loads and extreme loads
177(1)
2.1.2 Wind loads
177(1)
2.1.3 Ice loads
178(1)
2.1.4 Sloshing and slamming loads
179(1)
2.1.5 Turret loads, mooring loads, and towing loads
179(1)
2.2 Accidental loads
180(5)
2.2.1 Collision and grounding
180(3)
2.2.2 Fire, explosion and associated secondary loads
183(2)
2.3 Load combinations for application
185(1)
2.4 Experiments and monitoring
185(1)
2.5 Concluding remarks
186(1)
3 Structure Modelling And Response Analysis
186(11)
3.1 Structure modelling and analysis methods
187(1)
3.1.1 Simplified analysis/first principles
187(1)
3.1.2 Direct calculations
187(1)
3.1.3 Reliability analysis
188(1)
3.1.4 Optimisation-based analysis
188(1)
3.2 Failure modes and response analysis
188(6)
3.2.1 Buckling and ultimate strength
189(2)
3.2.2 Fatigue strength
191(1)
3.2.3 Residual strength
192(1)
3.2.4 Whipping
193(1)
3.3 New metallic materials, composite and sandwich structures
194(1)
3.4 Ageing structures
195(2)
3.4.1 Corrosion
195(1)
3.4.2 Fatigue cracks
195(1)
3.4.3 Dents
196(1)
3.5 Concluding remarks
197(1)
4 Uncertainty And Reliability Analysis
197(10)
4.1 Uncertainties in load modelling
197(3)
4.1.1 Still water and wave loads
197(1)
4.1.2 Wind loads
198(1)
4.1.3 Ice loads
198(1)
4.1.4 Sloshing and slamming loads
198(1)
4.1.5 Impact loads
199(1)
4.1.6 Loads combinations
199(1)
4.2 Uncertainties in structural modelling
200(2)
4.2.1 Corrosion deterioration
200(1)
4.2.2 Fabrication-related imperfections
200(1)
4.2.3 Impact damage
200(1)
4.2.4 Ultimate strength and buckling
201(1)
4.2.5 Fatigue damage
201(1)
4.3 Reliability and uncertainty analysis
202(3)
4.3.1 Reliability analysis
202(1)
4.3.2 Uncertainty analysis by stochastic finite element method
203(2)
4.3.3 Other probabilistic analysis methods
205(1)
4.4 Risk-based inspection, maintenance and repair
205(1)
4.5 Concluding remarks
206(1)
5 Development Of Rules And Software Systems
207(7)
5.1 Development of international rules and regulations
207(3)
5.1.1 IMO Goal-Based Standards
207(1)
5.1.2 New DNV GL rules
207(1)
5.1.3 Lloyd's Register rule development
208(1)
5.1.4 Materials and extra high strength steels
208(1)
5.1.5 Rules and standards for strength analysis of container ships
209(1)
5.1.6 Arctic/Ice
209(1)
5.1.7 Other updates of class rules
209(1)
5.2 Development of structural design software systems
210(3)
5.2.1 Class rule-related software
210(1)
5.2.2 Automatic mesh generation
211(2)
5.3 Concluding remarks
213(1)
6 Offshore And Other Specific Marine Structures
214(5)
6.1 Fixed offshore structures
214(2)
6.1.1 Uncertainty, reliability for soil property and wave loads
214(1)
6.1.2 Load, extreme response due to nonlinearity of Morison's force
215(1)
6.1.3 Fatigue
215(1)
6.2 Floating offshore structures
216(2)
6.2.1 Uncertainty and reliability analyses
216(1)
6.2.2 Loads: nonlinear hydrodynamic loads and coupled loads
216(1)
6.2.3 Fatigue and fracture: coupled loads, safety margin
217(1)
6.3 Other specific marine structures
218(1)
6.3.1 RoRo vessels and car carriers
218(1)
6.3.2 Livestock carriers
218(1)
6.4 Concluding remarks
219(1)
7 Benchmark Studies
219(13)
7.1 Ship structural response from different wave load schematisation
220(6)
7.1.1 Description of the ship structures, models, loads and loading conditions
220(3)
7.1.2 Results
223(2)
7.1.3 Concluding remarks
225(1)
7.2 FSI analysis of a stiffened plate subjected to slamming loads
226(32)
7.2.1 Model description
226(1)
7.2.2 Description of the simulation software packages and analyses
227(3)
7.2.3 Results
230(1)
7.2.4 Concluding remarks
231(1)
8 Conclusions And Recommendations
232(3)
References
235(20)
Committee II.2 Dynamic Response 255(80)
A. Ergin
E. Alley
A. Brandt
I. Drummen
O. Hermundstad
Y.C. Huh
A. Ivaldi
J.H. Liu
S. Malenica
O. el Moctar
R.J. Shyu
G. Storhaug
N. Vladimir
Y. Yamada
D. Zhan
G. Zhang
1 Introduction
258(1)
2 Ship Structures
258(29)
2.1 Wave-induced vibrations
258(8)
2.1.1 Full-scale measurements
259(2)
2.1.2 Model tests
261(3)
2.1.3 Analysis methods
264(2)
2.2 Machinery- and propeller-induced vibrations
266(2)
2.2.1 Propeller-induced vibration
266(1)
2.2.2 Machinery-induced vibration
267(1)
2.3 Sloshing impact
268(3)
2.3.1 Experimental approaches
269(1)
2.3.2 Numerical modelling
270(1)
2.4 Shock response
271(3)
2.4.1 Air blast
271(1)
2.4.2 Underwater explosion
272(2)
2.5 Noise
274(3)
2.5.1 Interior noise
274(1)
2.5.2 Air radiated noise
275(1)
2.5.3 Underwater radiated noise
276(1)
2.6 Damping and countermeasures
277(3)
2.7 Monitoring
280(3)
2.7.1 Definitions
280(1)
2.7.2 Hull monitoring rules
280(2)
2.7.3 Hull monitoring suppliers
282(1)
2.7.4 Digitalization
282(1)
2.8 Uncertainties
283(2)
2.9 Standards and acceptance criteria
285(2)
2.9.1 Wave-induced vibrations
285(2)
2.9.2 Noise
287(1)
2.9.3 Sloshing impacts
287(1)
3 Offshore Structures
287(15)
3.1 Wave-induced vibration
287(1)
3.2 Wind-induced vibration
288(2)
3.3 Vortex-induced vibration
290(3)
3.3.1 Experimental studies
290(2)
3.3.2 Semi-empirical methods
292(1)
3.3.3 Numerical methods
292(1)
3.4 Internal flow-induced vibration
293(1)
3.5 Equipment-induced vibration
294(1)
3.6 Shock and explosion
295(1)
3.7 Noise
295(2)
3.7.1 Pile-driving-induced underwater noise
296(1)
3.7.2 Mitigation of pile-driving-induced underwater noise
296(1)
3.8 Damping and countermeasures
297(1)
3.9 Monitoring
298(2)
3.9.1 Goal and scope
299(1)
3.9.2 Fatigue crack monitoring
299(1)
3.9.3 Subsea monitoring
299(1)
3.9.4 Monitoring of offshore wind turbines
300(1)
3.10 Uncertainties
300(1)
3.11 Standards and acceptance criteria
300(2)
3.11.1 Wave-induced vibrations
300(1)
3.11.2 Vortex-induced vibrations
301(1)
3.11.3 Noise and vibration
301(1)
3.11.4 Underwater noise
301(1)
4 Benchmark Study
302(9)
4.1 Introduction
302(1)
4.2 Benchmark setup
302(1)
4.3 Experimental results
303(1)
4.4 Methods
303(2)
4.5 Results
305(4)
4.6 Conclusions
309(2)
5 Conclusions
311(3)
References
314(21)
Committee III.1 Ultimate Strength 335(106)
J. Czujko
A. Bayaffar
M. Smith
M.C. Xu
D. Wang
M Latzen
S. Saad-Eldeen
D. Yanagihara
G. Notaro
X. Qian
J.S. Park
J. Broekhuijsen
S. Benson
S.J. Pahos
J. Boulares
1 Introduction
338(1)
2 Fundamentals
339(3)
2.1 Introduction
339(1)
2.2 Understanding of ultimate strength
339(1)
2.3 Design for ultimate strength
339(1)
2.3.1 General
339(1)
2.3.2 International association of classification societies (IACS)
340(1)
2.4 Design for limit states
340(1)
2.5 Safety factors for ultimate strength
341(1)
3 Assessment Of Ultimate Strength
342(11)
3.1 Introduction
342(1)
3.2 Topside structures
342(1)
3.3 Analytical methods
343(5)
3.3.1 Closed form methods
343(1)
3.3.2 Progressive collapse methods
343(2)
3.3.3 Gaps
345(1)
3.3.4 Residual strength of damaged hulls
346(1)
3.3.5 Analytical assessment of damage
346(1)
3.3.6 Development of empirical formulas for residual strength
347(1)
3.3.7 Benchmark studies and gaps
347(1)
3.4 Numerical methods
348(4)
3.4.1 Idealised structural unit method (ISUM)
349(1)
3.4.2 Nonlinear FE method
350(2)
3.5 Experimental methods
352(1)
4 Probabilistic Models And Reliability Assessments
353(4)
4.1 Introduction
353(1)
4.2 Reliability theory
354(1)
4.3 Reliability analyses
354(3)
4.3.1 Local structures
354(1)
4.3.2 Ship structures
354(1)
4.3.3 Corrosion wastage
355(1)
4.3.4 Grounding or collision
356(1)
4.3.5 Operational conditions and sea state
356(1)
4.3.6 Offshore structures
357(1)
5 Ship Shaped Structures
357(15)
5.1 Introduction
357(1)
5.2 Review of state of the art
358(7)
5.2.1 Design for ultimate strength of ships
358(5)
5.2.2 Design for residual strength
363(2)
5.3 Developments in ultimate strength assessment
365(3)
5.3.1 Load combination and dynamic effects
365(2)
5.3.2 Composite and aluminium vessels; novel hull design
367(1)
5.4 Developments in the residual strength assessment of damaged vessels
368(2)
5.5 Areas for future development
370(2)
6 Marine Structures
372(9)
6.1 Introduction
372(1)
6.1.1 General
372(1)
6.1.2 Review of previous ISSC reports
373(1)
6.2 Standards and rules for the ultimate strength of marine structures
373(5)
6.2.1 Offshore standards
373(1)
6.2.2 Classification Societies rules and requirements
374(1)
6.2.3 Design of offshore structures
375(1)
6.2.4 Assessment of existing structures
376(1)
6.2.5 Seismic design guidelines
376(1)
6.2.6 Accidental damage and residual strength
377(1)
6.2.7 Design of cold climate and arctic
378(1)
6.3 Development in the assessment of the ultimate strength
378(3)
6.3.1 Assessment of existing offshore structures
378(1)
6.3.2 Seismic assessment
378(1)
6.3.3 Arctic condition
379(1)
6.3.4 Assessment of damage effect (collision, dropped objects and fire)
379(2)
7 Ultimate Strength Of Structural Components And Connections
381(9)
7.1 Components and connections for ships and floating structures
381(4)
7.1.1 Plates and stiffened panels
381(2)
7.1.2 Plate connections
383(1)
7.1.3 Beams and girders
383(1)
7.1.4 Fabrication effects
384(1)
7.2 Tubular members and components
385(4)
7.2.1 Tubular members
385(1)
7.2.2 Tubular joints
386(1)
7.2.3 Other types of tubular components
387(1)
7.2.4 Reinforced tubular components
387(2)
7.3 Developments in other structural components
389(1)
7.3.1 Aluminium components and connections
389(1)
7.3.2 Composite components and connections
389(1)
7.3.3 Windows and doors
389(1)
8 Materials
390(4)
8.1 Introduction
390(1)
8.2 Aluminium alloys
390(2)
8.3 Composite structures
392(2)
9 Benchmark Study
394(27)
9.1 Ultimate strength of joints subjected to fire loads
394(18)
9.1.1 Scope of benchmark
394(1)
9.1.2 Strategy of benchmark study
395(1)
9.1.3 Benchmark model
395(5)
9.1.4 Results of benchmark study
400(12)
9.1.5 Conclusions
412(1)
9.2 Ultimate strength of box girders subjected to bending
412(33)
9.2.1 Scope of benchmark
412(1)
9.2.2 Strategy of benchmark
413(1)
9.2.3 Benchmark models
413(4)
9.2.4 Results of experiments
417(1)
9.2.5 Results of benchmark study
417(3)
9.2.6 Conclusions
420(1)
10 Conclusions And Recommendations
421(3)
References
424(17)
Committee III.2 Fatigue and Fracture 441(108)
Y. Garbatov
S.K. As
K. Branner
B.K. Choi
J.H. Den Besten
P. Dong
I. Lillemele
P. Lindstrom
M. Lourenco de Souza
G. Parmentier
Y. Quemener
C.M. Rizzo
J Rorup
S. Vhanmane
R. Villavicencio
F. Wang
J. Yue
1 Fatigue And Fracture Loading
445(9)
1.1 Fatigue loading
445(6)
1.1.1 Metocean description
445(1)
1.1.2 Waves
446(2)
1.1.3 Current
448(1)
1.1.4 Wind
449(1)
1.1.5 Temperature and ice
449(1)
1.1.6 Earthquakes and soil interaction
450(1)
1.1.7 Operations
450(1)
1.1.8 Loading interaction
451(1)
1.2 Fatigue loading calculation
451(3)
1.2.1 Rules, standards, codes and guideline-based assessment
451(1)
1.2.2 Direct assessment
452(2)
1.3 Fracture loading
454(1)
2 Material Properties And Testing
454(8)
2.1 Material properties
454(5)
2.1.1 Monotonic material behaviour
454(1)
2.1.2 Cyclic material behaviour
455(1)
2.1.3 Fracture properties
455(1)
2.1.4 Fatigue properties
456(1)
2.1.5 Materials
456(1)
2.1.6 Arc-welded and laser welded joints
457(1)
2.1.7 Friction stir welded joints
457(1)
2.1.8 Corrosive environment
458(1)
2.1.9 Similarity
459(1)
2.2 Polymer composites testing
459(2)
2.2.1 Sub-components
460(1)
2.2.2 Full-scale components
460(1)
2.3 Testing methods and measurement techniques
461(1)
3 Fatigue Damage Accumulation Approaches
462(18)
3.1 Overview
463(1)
3.2 Damage criterion advances
463(7)
3.2.1 Hotspot structural stress
464(1)
3.2.2 Effective notch stress
464(2)
3.2.3 Effective notch strain
466(1)
3.2.4 Notch stress intensity
466(1)
3.2.5 Strain energy density (SED)
466(1)
3.2.6 Peak stress
467(1)
3.2.7 Battelle structural stress
467(1)
3.2.8 Total stress
467(1)
3.2.9 Crack tip stress or strain intensity
468(2)
3.2.10 Crack tip energy release rate
470(1)
3.3 Damage mechanics criterion advances
470(1)
3.4 Complete strength criteria
470(7)
3.4.1 Multiaxiality and amplitude variability
470(4)
3.4.2 Mean- and residual stress
474(1)
3.4.3 Time and frequency domain
475(1)
3.4.4 Environment
476(1)
3.5 Total life criteria
477(1)
3.6 Multi-scale criteria
478(2)
3.7 Damage criterion statistics
480(1)
4 Crack Growth Approaches
480(9)
4.1 Defects and initial cracks
480(1)
4.2 Crack sizing during in-service inspection
481(1)
4.3 Modelling
481(3)
4.3.1 Paris relations
481(1)
4.3.2 Modified relations
482(2)
4.4 Parameter estimates
484(1)
4.5 Experimental data
484(1)
4.6 Numerical simulations
484(3)
4.6.1 Loading sequence
484(1)
4.6.2 Residual stress
485(1)
4.6.3 Simulation on different crack forms and positions
485(1)
4.6.4 Damage mechanics models
486(1)
4.6.5 Polymer composites
487(1)
4.7 Crack growth assessment statistics
487(1)
4.8 Service life extension
488(1)
5 Fabrication, Degradation, Improvements And Repair
489(8)
5.1 Fabrication imperfections
489(4)
5.1.1 Misalignments and distortions
489(1)
5.1.2 Welding induced defects
490(2)
5.1.3 Initial crack size
492(1)
5.2 In-service degradation
493(1)
5.3 Strength improvement
493(3)
5.4 Polymer composite patch repairs
496(1)
6 Fatigue Reliability
497(9)
6.1 Statistical descriptors
498(2)
6.1.1 Fatigue loading
498(1)
6.1.2 Fatigue damage accumulation
499(1)
6.1.3 Crack growth
500(1)
6.2 Limit state functions
500(2)
6.2.1 Fatigue damage accumulation
500(1)
6.2.2 Crack growth
501(1)
6.3 Calibration factors for design
502(2)
6.4 Fatigue service lifetime estimate
504(2)
6.4.1 Fatigue damage accumulation
504(1)
6.4.2 Crack growth
505(1)
7 Fatigue Design And Verification Based On Rules, Standards, Codes And Guidelines
506(12)
7.1 Common Structural Rules (CSR)
506(2)
7.1.1 Fatigue capacity
507(1)
7.1.2 Fatigue Loads
507(1)
7.1.3 Fatigue assessment
508(1)
7.2 DNV GL regulations
508(1)
7.3 Lloyd's Register (LR) regulations
509(1)
7.4 Bureau Veritas (BV) regulations
510(1)
7.5 Indian Register of Shipping (IRS) regulations
511(1)
7.6 Comparison of simplified fatigue approaches
512(5)
7.6.1 Loading
513(1)
7.6.2 Response
514(3)
7.6.3 Assessment
517(1)
7.7 International Gas Carrier (IGC) code
517(1)
8 Conclusions And Recommendations
518(4)
8.1 Fatigue and fracture loading
518(1)
8.2 Material properties and testing
519(1)
8.3 Fatigue damage accumulation approaches
519(1)
8.4 Crack growth approaches
520(1)
8.5 Fabrication, degradation, improvements and repair
520(1)
8.6 Fatigue reliability
521(1)
8.7 Fatigue design and verification based on rules, standards, codes and guidelines
521(1)
References
522(27)
Committee IV.1 Design Principles and Criteria 549(60)
Matthew Collette
Zhihu Zhan
Ling Zhu
Vedran Zanic
Tetsuo Okada
Toshiro Arima
Rolf Skjong
Han Koo Jeong
Gennadiy Egorov
1 Introduction
551(1)
2 Concepts And Developments In Principles And Criteria
551(15)
2.1 Sustainability and Lifecycle Principles
551(3)
2.2 Goal-Based Approaches
554(1)
2.3 In-Service Reassessment for Life Extensions
555(3)
2.4 Human Performance in Engineering and Criteria Evaluation
558(6)
2.4.1 The Challenge of Human Performance in Engineering
558(1)
2.4.2 Past Work
558(2)
2.4.3 Scope of the Current Review
560(1)
2.4.4 Review of Ongoing Research
560(3)
2.4.5 Assessment of the State of the Art of Engineering Human Performance Criteria
563(1)
2.5 Inland and Coastal Vessels
564(2)
3 Principles And Criteria For Using On-Board Monitoring Data
566(4)
3.1 Code and Safety Updating Offline
566(1)
3.2 Full-Scale Measurement Campaigns
567(1)
3.3 Decision Support Systems
568(1)
3.4 Onsite Estimation of Ocean Waves
568(2)
4 Principles And Criteria For Accidental Loads
570(14)
4.1 Collision and Grounding
570(9)
4.1.1 Collision
571(4)
4.1.2 Grounding
575(3)
4.1.3 Failure criteria
578(1)
4.2 Slamming
579(2)
4.3 Explosion and Fire
581(3)
4.3.1 Principles and criteria for structures under blast loading
581(2)
4.3.2 Principles and criteria for fire induced hazards
583(1)
5 Principles And Criteria For Arctic Operation
584(7)
5.1 Arctic Operational Environment
584(1)
5.2 Ice Load Prediction
585(2)
5.3 Design Approaches for Ice Loaded Hull Structures with Application to Structural Design
587(3)
5.4 Assessment of Ice Class Rules
590(1)
6 Conclusions
591(1)
References
592(17)
Committee IV.2 Design Methods 609(100)
I. Lazakis
R. Bronsart
J.D. Caprace
Y. Chen
P. Georgiev
I. Ilnitskiy
L. Moro
P. Prebeg
J. Mendonca Santos
Z. Sekulski
M. Sicchiero
R. Sielski
W. Tang
M. Toyoda
J. Varela
1 Introduction
612(1)
2 Design Methods
613(12)
2.1 Design methods
613(6)
2.1.1 Optimization methods
613(2)
2.1.2 Surrogate modelling and variable fidelity approaches
615(2)
2.1.3 Other relevant structural design approaches
617(2)
2.2 Review of ship structural design for X
619(6)
2.2.1 Design for life-cycle performance
620(1)
2.2.2 Design for maintenance & repair
621(2)
2.2.3 Design for safety
623(2)
3 Design Tool Development
625(7)
3.1 CAD Systems for Naval Architecture
625(1)
3.2 Virtual Reality and Augmented Reality
626(1)
3.3 Specialized structural simulation packages
627(2)
3.4 Risk-based design software tools
629(2)
3.4.1 Software Platform
630(1)
3.4.2 Hazard Identification Tools and Risk Assessment Tools
630(1)
3.5 Optimization Tools
631(1)
4 Offshore Structures
632(21)
4.1 Introduction
632(2)
4.2 Design Methodology in Offshore Structures Design
634(1)
4.3 Design Challenges, Progress & Trends
634(8)
4.3.1 Standardization
635(1)
4.3.2 Oil & Gas E&P Counter Cycle
636(1)
4.3.3 Asset Integrity & Maintenance
637(2)
4.3.4 Design & Methodology Developments
639(3)
4.4 Survey on Offshore Structures Design Software
642(9)
4.4.1 Overview and characterization of respondents
642(2)
4.4.2 Naval Architecture Tools
644(4)
4.4.3 Structural Design Tools
648(2)
4.4.4 Software Integration & New Technology
650(1)
4.5 Foresight in Offshore Structures Design
651(2)
5 State-Of-Art vs. State-Of Practice
653(12)
5.1 Motivation, background, and aim
653(1)
5.2 State-of-the-art
654(7)
5.2.1 Bibliometrics
654(1)
5.2.2 Main research topics and their bibliometrics
655(2)
5.2.3 Design methodology
657(2)
5.2.4 Design tools
659(1)
5.2.5 Optimization developments
660(1)
5.2.6 Life cycle management
661(1)
5.3 State-of-practice
661(4)
5.3.1 Technology Readiness Level - TRL
662(2)
5.3.2 ISSC IV.2 Committee point of view
664(1)
6 Comparison Of Classification Society Software
665(11)
6.1 Introduction
665(1)
6.2 The IACS Common Structural Rules
665(3)
6.2.1 H-CSR rules requirements
666(2)
6.3 Comparison of classification society tools for H-CSR
668(7)
6.3.1 H-CSR software packages
669(4)
6.3.2 Aframax tanker modelling for prescriptive rule calculation
673(2)
6.4 Industry point of view
675(1)
6.5 Conclusions
676(1)
7 Lifecycle Data Management
676(8)
7.1 Tool development
677(2)
7.2 Data interchange and standards
679(2)
7.3 Structural and system health monitoring tools
681(3)
8 Obstacles, Challenges And Future Developments
684(5)
8.1 Common Structural Rules for Bulk Carriers and Oil Tankers
684(2)
8.2 Energy Efficiency Design Index (EEDI)
686(1)
8.3 The new design paradigm
687(1)
8.4 Formulation of accurate optimization models including FEA
687(1)
8.5 Analytical methods for impact analysis
687(1)
8.6 Development a complete risk assessment frame-work for ship accident
688(1)
8.7 Mega container ship
688(1)
8.8 Unmanned ships
688(1)
9 Conclusions
689(2)
Acknowledgments
691(1)
References
691(18)
Subject Index 709(2)
Author Index 711