Atjaunināt sīkdatņu piekrišanu

Proceedings of the 20th International Ship and Offshore Structures Congress Issc 2018: Specialist Committee Reports, 2

  • Cena: 183,30 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Preface v
Mirek Kaminski
Philippe Rigo
Committee V.1 Accidental Limit States 1(72)
E. Rizzuto
L. Brubak
Z. Hu
G.S. Kim
M. Korgesaar
K. Nahshon
A. Nilva
I. Schipperen
G. Stadie-Frohboes
K. Suzuki
K Tabri
J. Woegter
1 Introduction
4(1)
2 Scenarios For The Design Of Marine Structures
4(8)
2.1 Probability of occurrence of a scenario
5(1)
2.2 Consequences of exposure to a given scenario
5(1)
2.3 Characteristics of scenarios for limit states design
6(3)
2.3.1 Scenarios for verifications of ULSs
7(1)
2.3.2 Wave loads scenarios for ULS
7(2)
2.3.3 Scenarios for verifications of SLSs
9(1)
2.3.4 Scenarios for verifications of FLSs
9(1)
2.4 Accidental and abnormal environmental situations
9(1)
2.5 Uncertainties in accidental scenarios
10(1)
2.6 Design accidental/abnormal scenarios
10(1)
2.7 Design Standards
11(1)
2.8 Status of existing design standards for ships in relation to accidental scenarios
11(1)
3 Abnormal Environmental Events
12(3)
3.1 Abnormal waves
12(1)
3.2 Abnormal wave design loads for offshore structures
13(1)
3.3 Comments to offshore scenarios
14(1)
3.4 Possible definition of abnormal wave scenarios for ships
15(1)
4 Methods And Procedures For The Analysis Of ALS
15(13)
4.1 Introduction
15(2)
4.2 Modelling details and response evaluation
17(3)
4.2.1 Analytical methodology on response evaluation
17(2)
4.2.2 Numerical simulation methodology
19(1)
4.3 Present application and recent development in current standards
20(1)
4.4 Material models to be used in FEM
21(7)
4.4.1 Metallic Shipbuilding Materials
21(2)
4.4.2 Composites
23(1)
4.4.3 Foam
24(2)
4.4.4 Rubber
26(1)
4.4.5 Ice
26(1)
4.4.6 Soil
27(1)
5 Collision
28(6)
5.1 Ship collision categories
28(4)
5.1.1 Ship-ship collision
28(1)
5.1.2 Ship-offshore collision
29(1)
5.1.3 Ship-bridge collision
30(1)
5.1.4 Ship-ice collision
31(1)
5.2 Most critical/relevant condition and design/analysis methods
32(1)
5.3 Acceptance criteria/consequence evaluation
33(1)
6 Grounding
34(7)
6.1 Introduction
34(1)
6.2 Most critical/relevant condition
35(2)
6.3 Analysis methods
37(3)
6.3.1 Experiments
37(1)
6.3.2 Statistical models
38(1)
6.3.3 Numerical models
38(1)
6.3.4 Empirical and regression models
39(1)
6.3.5 Analytical models
40(1)
6.4 Acceptance criteria/consequence evaluation
40(1)
7 Fire And Explosion
41(8)
7.1 Introduction
41(1)
7.2 Prescriptive vs performance based codes
41(1)
7.3 Fire and explosion analysis: General
42(1)
7.4 The Risk of Fire and Explosion accidents
43(2)
7.4.1 Action effects and modelling
43(1)
7.4.2 Accidental scenario and probability
44(1)
7.5 Design Requirements of Fire and Explosion Accidents for LNG Ships
45(1)
7.5.1 Fire and explosion design for LNG carriers and FSRU
45(1)
7.5.2 Fire and explosion design for Gas fuelled ships
45(1)
7.6 Fire and explosion analyses for LNG ships
46(3)
7.6.1 Fire and explosion analyses for LNG carriers and FSRUs
46(3)
7.6.2 Fire and explosion analyses for LNG fuelled ships
49(1)
8 Maritime Safety And Rescue Services
49(3)
8.1 Emergency Response Services - ERS
50(1)
8.2 ERS Functionality
50(1)
8.3 Basis for decisions making
51(1)
9 Benchmark Study
52(6)
9.1 Introduction
52(1)
9.2 Experiment
52(1)
9.3 Input data
53(1)
9.4 Results
54(1)
9.5 Sensitivity studies
55(1)
9.5.1 Sensitivity for friction coefficients
55(1)
9.5.2 Sensitivity to failure strain values
56(1)
9.5.3 Sensitivity to mesh refinement
56(1)
9.6 Summary
56(2)
References
58(12)
Annex
70(3)
Committee V.2 Experimental Methods 73(70)
D. Dessi
F. Brennan
M. Hoogeland
X.B. Li
C. Michailides
D. Pearson
J. Romanoff
X.H. Shi
T. Sugimura
G. Wang
1 Introduction
76(1)
2 Acronyms & Abbreviations
76(1)
3 Laboratory Experimentation
77(18)
3.1 Scaled and small size
77(7)
3.1.1 Ultimate strength
77(1)
3.1.2 Fatigue
78(1)
3.1.3 Cracking and fracture
79(4)
3.1.4 Corrosion
83(1)
3.1.5 Friction
83(1)
3.2 Large scale experiment
84(2)
3.2.1 Ultimate strength
84(1)
3.2.2 Large scale fatigue testing
85(1)
3.3 Impact & impulsive loading and response assessment
86(6)
3.3.1 Ship Collisions and Grounding
86(3)
3.3.2 Underwater explosion
89(1)
3.3.3 Vibration
90(2)
3.4 Fluid-structure interaction
92(3)
3.4.1 Hydroelastic scaled tests
92(2)
3.4.2 Slamming and water impact tests
94(1)
4 Full Scale Tests
95(6)
4.1 Ships and offshore structures
95(4)
4.1.1 Monitoring of loads and responses
95(2)
4.1.2 Structural identification
97(2)
4.2 Application of experimentation, inspection and monitoring
99(2)
4.2.1 Design
99(1)
4.2.2 Construction
99(1)
4.2.3 Operation, Inspection, Monitoring and Maintenance
100(1)
5 Correlation Issues Between Scaled (Physical) Models, Full-Scale Structures (Ship And Offshore) And Numerical Simulations
101(4)
5.1 Scaling laws
101(1)
5.2 Model to full-scale investigation
102(1)
5.3 Integration of experiments and numerical simulations
103(2)
6 Best Practice And Guidelines
105(2)
6.1 Data uncertainty
105(1)
6.2 Design of experiments
106(1)
6.3 Quality standards
107(1)
7 Contemporary And Emerging Techniques
107(15)
7.1 Overview of current techniques
108(4)
7.1.1 Displacement measurement
108(1)
7.1.2 Strain/stress measurement
108(2)
7.1.3 Force measurement
110(1)
7.1.4 Pressure measurement
110(1)
7.1.5 Acceleration measurement
111(1)
7.1.6 Multi-variable measurements
111(1)
7.2 Novel measurement Techniques
112(7)
7.2.1 MEMS
112(3)
7.2.2 WSN
115(3)
7.2.3 Energy Harvesting Devices
118(1)
7.3 Big-data analysis
119(27)
7.3.1 Values of Big Data as a Technology
119(1)
7.3.2 Recent Activities in the Maritime Industry
120(1)
7.3.3 Status of Maritime Application of Big Data
121(1)
7.3.4 Future Potentials of R&D
122(1)
7.3.5 Conclusions
122(1)
8 Conclusions And Recommendations For Future Work
122(1)
References
123(20)
Committee V.3 Materials and Fabrication Technology 143(50)
Lennart Josefson
Stephen van Duin
Bianca de Carvalho Pinheiro
Nana Yang
Luo Yu
Albert Zamarin
Heikki Remes
Frank Roland
Marco Gaiotti
Naoki Osawa
Agnes Marie Horn
Myung Hyun Kim
Brajendra Mishra
1 Introduction
146(1)
2 General Trends
146(3)
2.1 Ongoing research programmes on materials and fabrication technology
148(1)
2.1.1 China
148(1)
2.1.2 Europe
148(1)
2.1.3 Australia
149(1)
3 Materials
149(9)
3.1 Low temperature steels
149(2)
3.1.1 Nickel steels
150(1)
3.1.2 Stainless steels and aluminum
151(1)
3.1.3 High manganese steel
151(1)
3.2 High strength steels
151(1)
3.3 Steels for use in the arctic
152(3)
3.4 Composite materials
155(2)
3.4.1 Mechanical aspects
155(1)
3.4.2 Recent technological innovations
156(1)
3.4.3 Composites for subsea applications
156(1)
3.5 Weight reducing materials
157(1)
4 Joining And Fabrication
158(9)
4.1 Advances in joining technology
159(3)
4.1.1 Low heat input welding processes
159(1)
4.1.2 Secondary Processes - Active distortion control
160(2)
4.2 Automation and robotic programming
162(1)
4.3 Additive Manufacturing
163(1)
4.4 Fabrication and joining of composites
164(3)
4.4.1 Air inclusions
164(1)
4.4.2 Exothermic peak
164(1)
4.4.3 Bending response of infusion made composites
165(1)
4.4.4 Prepregs
165(1)
4.4.5 Fibre-matrix interface
165(1)
4.4.6 Epoxy matrix
165(1)
4.4.7 Non-crimp fibers
166(1)
4.4.8 Joining of composites
166(1)
4.4.9 Influence of the ply orientation
166(1)
4.4.10 Nanoparticies
167(1)
4.4.11 Fire resistance
167(1)
5 Qualification And Approval
167(5)
5.1 Qualification of composites
168(3)
5.1.1 Hamburg meeting on qualification on composites
168(1)
5.1.2 Best practice of qualification of composites
169(2)
5.2 Qualification and approval processes by the class societies
171(1)
5.2.1 DNV GL
171(1)
5.2.2 ABS
171(1)
5.2.3 Bureau Veritas
172(1)
5.2.4 Lloyds
172(1)
5.2.5 IMO
172(1)
6 Benchmarks And Case Studies
172(11)
6.1 Uncertainness in welding simulation
172(2)
6.2 Sensitivity analysis on the cohesive parameters of a carbon-steel single lap
174(3)
6.2.1 Model Description, material properties and mesh size
175(1)
6.2.2 Cohesive model
175(1)
6.2.3 Reference cohesive parameters
176(1)
6.2.4 Experimental/numerical comparison and influence of parameter k
176(1)
6.2.5 Influence of Gc
177(1)
6.2.6 Influence of α
177(1)
6.3 Fatigue life improvement using HFMI treatment
177(19)
6.3.1 Multiple impact simulation of the HFMI process on stress-free steel sheets
178(4)
6.3.2 Single impact simulation of the HFMI process on stress-free steel sheets
182(1)
6.3.3 Summary and future plans
183(1)
7 Conclusions And Recommendations
183(1)
References
184(9)
Committee V.4 Offshore Renewable Energy 193(86)
Zhen Gao
Harry B. Bingham
David Ingram
Athanasios Kolios
Debabrata Karmakar
Tomoaki Utsunomiya
Ivan Catipovic
Giuseppina Colicchio
Jose Miguel Rodrigues
Frank Adam
Dale G. Karr
Chuang Fang
Hyun-Kyoung Shin
Johan Skitte
Chunyan Ji
Wanan Sheng
Pengfei Liu
Lyudmil Stoev
1 Introduction
195(1)
2 Offshore Wind Turbines
196(28)
2.1 Recent industry development
196(2)
2.2 Numerical modelling and analysis
198(10)
2.2.1 Numerical tools - state-of-the-art and validation
198(1)
2.2.2 Loads and response analysis of bottom-fixed wind turbines
199(4)
2.2.3 Loads and response analysis of floating wind turbines
203(5)
2.3 Physical testing
208(8)
2.3.1 Lab testing
208(7)
2.3.2 Field testing
215(1)
2.4 Transport, installation, operation and maintenance
216(4)
2.4.1 Transport and installation
216(3)
2.4.2 Operation and maintenance
219(1)
2.5 Design standards and guidelines
220(1)
2.6 Comparative study of optimal offshore wind turbine support structure configurations in varying water depths
221(3)
3 Wave Energy Converters
224(17)
3.1 Numerical modelling and analysis
224(7)
3.1.1 Load and motion response analysis
225(2)
3.1.2 Power take-off analysis
227(2)
3.1.3 Mooring analysis
229(2)
3.2 Physical testing
231(8)
3.2.1 Laboratory testing and validation of numerical tools
231(6)
3.2.2 Field testing
237(2)
3.3 Design rules and standards
239(1)
3.4 ISSC contribution to the IEA OES benchmark study
240(1)
4 Tidal And Ocean Current Turbines
241(8)
4.1 Recent development
241(1)
4.2 Environmental Conditions
242(2)
4.3 Tidal turbine loads and response analysis
244(6)
4.3.1 Numerical methods
244(2)
4.3.2 Laboratory tests and field measurements
246(3)
5 Other Offshore Renewable Energy Technologies
249(1)
6 Cost Of Offshore Renewable Energy
250(5)
6.1 General aspects
250(1)
6.2 Current status and potential for cost reduction
251(3)
6.3 Cost models and analysis tools
254(1)
7 Main Conclusions And Recommendations For Future Work
255(2)
References
257(22)
Committee V.5 Special Craft 279(68)
D. Truelock
Z. Czaban
H. Luo
X. Wang
M. Holtmann
E. Begovic
A. Yasuda
M. Ventura
R. Nicholls-Lee
E. Oterkus
P. Sensharma
1 Introduction To Special Craft
282(3)
1.1 Definition of Special Craft and Types
282(3)
1.1.1 Market Analysis of Naval Craft
282(1)
1.1.2 Market Analysis of Offshore Operation Vessels
283(1)
1.1.3 Market Analysis of Yachts
284(1)
2 Rules And Standards
285(13)
2.1 HSC Rules
285(4)
2.1.1 ABS Rules for Classification of High-Speed Craft 2017
287(1)
2.1.2 DNV GL Rules for Classification - High speed and light craft 2015c
287(1)
2.1.3 LR Classification of Special Service Craft Rules 2016
288(1)
2.1.4 CCS China Classification Society 2017
289(1)
2.2 Yachts
289(2)
2.3 Naval craft/Surface Combatant
291(3)
2.3.1 NATO and national standards
291(2)
2.3.2 Class Rules
293(1)
2.4 Polar Ship/Icebreaker
294(1)
2.5 Offshore Operations Vessels
295(1)
2.6 Special Structures Rules and Standards
295(3)
2.6.1 Moonpools
295(1)
2.6.2 Helicopter Decks
296(2)
2.6.3 Free-Fall lifeboats
298(1)
3 Naval Craft
298(9)
3.1 Why Naval Standards are Special
299(8)
3.1.1 The Argument For Maintaining Naval Standards
301(4)
3.1.2 The Cost-Benefit of Naval Standards
305(2)
3.2 Recommendations
307(1)
4 Offshore Operation Vessels
307(3)
4.1 Subsea Drilling/Construction Vessels
308(1)
4.2 Self-Elevating Vessels (Lift Boats)
308(1)
4.3 Heavy Lift (Semi-Submersible) Ships
309(1)
4.4 Accommodation Vessels
309(1)
4.5 SWATH Offshore Vessels
310(1)
5 Yachts
310(9)
5.1 Motor Yachts
311(5)
5.1.1 Megayachts and Gigayachts
311(2)
5.1.2 Superyachts
313(1)
5.1.3 Expedition Yachts
314(2)
5.1.4 Small Yachts
316(1)
5.2 Sailing Yachts
316(2)
5.2.1 Giga, Mega and Superyachts
316(1)
5.2.2 Racing Yachts
317(1)
5.3 Recommendations
318(1)
6 Special Hull And Appurtenance Structures
319(10)
6.1 Freefall Lifeboats
319(2)
6.1.1 Impact Loads
320(1)
6.1.2 Simulation
321(1)
6.2 SWATH Hulls
321(1)
6.3 Heavy Lift Hulls
322(1)
6.4 Icebreaking Hulls
323(1)
6.5 Wave-Piercing Catamaran Hulls
323(2)
6.6 Moonpools
325(1)
6.7 Offshore vessels Helideck Design and Integration
326(3)
6.7.1 Materials and Analysis Techniques
327(1)
6.7.2 Structural Configurations
328(1)
6.7.3 Thermal Loads
328(1)
7 Conclusions And Recommendations
329(2)
7.1 Recommended Research for Future Special Craft Committees
329(1)
7.1.1 Autonomous and Unmanned Vessels
329(1)
7.1.2 Research and Polar Vessels
330(1)
7.2 Emerging Structural Trends to Watch
330(1)
7.2.1 Total Cost of Ownership
330(1)
7.2.2 3D Printing for Structures
330(1)
7.3 Concluding Remarks
331(1)
References
331(16)
Committee V.6 Arctic Technology 347(44)
S. Ehlers
A. Polojeirvi
A. Vredeveldt
B. Quinton
E. Kim
F. Ralph
J. Sirkar
P.O. Moslet
T. Fukui
W. Kuehnlein
Z. Wan
1 Introduction
349(2)
2 Design Methods For Marine Structures
351(11)
2.1 Rules for ships
352(5)
2.1.1 IMO Polar Code
352(1)
2.1.2 IACS Polar Class Rules
353(3)
2.1.3 IMO POLARIS
356(1)
2.1.4 RMRS Rules
356(1)
2.2 Rules for offshore structures
357(2)
2.3 Mission-based analysis for ships
359(2)
2.4 Difference between ship and offshore rules
361(1)
3 Structural Capacity
362(6)
3.1 Limit states
362(1)
3.2 Response to moving loads
363(1)
3.3 Temperature definitions
364(1)
3.4 Requirements of ductile to brittle transition
365(1)
3.5 The effects of low temperature on fatigue and fracture properties
366(2)
3.6 Repair limits
368(1)
4 Ice Load Measurement And Modelling
368(9)
4.1 Full-scale
368(2)
4.2 Laboratory-scale
370(1)
4.3 Ice load modelling and validation
371(2)
4.4 Towards a benchmark data suite
373(1)
4.5 Propeller ice interaction
374(1)
4.6 Ice induced vibration (IIV)
375(1)
4.7 Ice induced fatigue
376(1)
5 Summary And Recommendations
377(1)
References
378(9)
Appendix
387(7)
A.1 Guidelines For The Nonlinear Analysis Of Moving Ice Loads
387(2)
A.2 Simulators
389(2)
Committee V.7 Structural Longevity 391(70)
P. Hess
S. Aksu
M. Vaz
G. Feng
L. Li
P. Jurisic
M.R. Andersen
P. Caridis
D. Boote
H. Murayama
N. Amila
B. Leira
M. Tammer
J. Blake
N. Chen
A. Egorov
1 Introduction
394(1)
1.1 Background & Mandate
394(1)
1.2 Structural Longevity Considerations
394(1)
1.3 Report Content
395(1)
2 Life-Cycle Assessment & Management For Structural Longevity
395(7)
2.1 Introduction
395(1)
2.2 Life-cycle Assessment & Integrity Management
396(3)
2.2.1 Classification Societies
396(1)
2.2.2 Offshore platform - API and ISO Rules
397(2)
2.3 Lifetime Extension
399(1)
2.4 Challenges and Opportunities
399(3)
2.5 Conclusions
402(1)
3 Inspection And Monitoring
402(12)
3.1 Introduction
402(1)
3.2 Inspection
402(3)
3.3 Monitoring techniques
405(1)
3.4 Hull monitoring systems
406(4)
3.5 Data acquisitions, transfer, processing, and management
410(3)
3.6 Conclusions
413(1)
3.7 Recommendations
413(1)
4 Offshore Structural Longevity Methods And Examples
414(15)
4.1 Introduction
414(1)
4.2 Prediction of Longevity
414(1)
4.3 Main factors influencing longevity
415(5)
4.3.1 Corrosion
416(1)
4.3.2 CP/Anode depletion/Coating deterioration
416(1)
4.3.3 Wear & tear
417(1)
4.3.4 Fatigue
417(2)
4.3.5 Buckling
419(1)
4.4 Methods ensuring safe operation
420(5)
4.4.1 General
420(1)
4.4.2 Structural Integrity Management (SIM)
420(1)
4.4.3 Codes and guidelines covering structural integrity management
421(1)
4.4.4 Survey and inspection methods
422(1)
4.4.5 Repair/mitigation
423(1)
4.4.6 Lifetime extension
424(1)
4.5 Special items
425(3)
4.5.1 Risers/pipelines
425(1)
4.5.2 Mooring lines
425(1)
4.5.3 Caisson
426(1)
4.5.4 Conductors
426(1)
4.5.5 Wind turbines
427(1)
4.6 Offshore Platform Longevity Processes
428(1)
4.7 Conclusions and Recommendations
429(1)
5 Ship Structural Longevity Methods And Examples
429(18)
5.1 Introduction
429(1)
5.2 Prediction of longevity
429(7)
5.2.1 Models for prediction of longevity
429(2)
5.2.2 Failure Modes Contributing to Longevity Assessment
431(5)
5.3 Main factors influencing longevity
436(4)
5.3.1 Role of Life Extension Programs
438(2)
5.4 Methods for ensuring safe operation
440(2)
5.4.1 Current practice and future directions
440(1)
5.4.2 Structure Monitoring, Inspection, Maintenance, and Repairs
440(1)
5.4.3 At-sea damage response: measurement, analysis, repair, and/or change in operation
441(1)
5.4.4 Remaining Service Life
442(1)
5.5 Notional Examples of Longevity and Life Extension Decisions
442(4)
5.5.1 Naval Ship
442(1)
5.5.2 Bulk carrier/Tanker/Container
443(1)
5.5.3 Inland Vessels
444(2)
5.6 Discussion and Conclusions
446(1)
6 Conclusions & Recommendations
447(2)
6.1 Conclusions
447(1)
6.2 Recommendations
448(1)
References
449(12)
Committee V.8 Report for Subsea Technology 461(64)
Menglan Duan
Shuhong Chai
Ilson Paranhos Pasqualino
Liping Sun
Claus Myllerup
Spyros Mavrakos
Asokendu Samanta
Kieran Kavanagh
Masahiko Ozaki
Svein Scevik
Angelo Teixeira
Ying Min Low
Jung Kwan Seo
Sebastian Schreier
Pieter Swart
Hao Song
1 Introduction
464(1)
2 Subsea Processing Equipment And Fabrication
465(5)
2.1 Introduction
465(1)
2.2 Separators
466(2)
2.2.1 Subsea Gas-Liquid Separation
466(1)
2.2.2 Subsea Multiphase Separation
467(1)
2.2.3 Recent Studies
467(1)
2.3 Pumps
468(1)
2.4 Compressors
468(1)
2.5 Electrical Systems
469(1)
2.6 Material for Fabrication of Key Components
469(1)
3 Flow Assurance Of Subsea Production Engineering
470(5)
3.1 Thermal management
470(2)
3.2 Chemical injection
472(1)
3.3 Operation and equipment
472(1)
3.4 Software technology
473(1)
3.5 Prospective approach
474(1)
3.6 Conclusions
474(1)
4 Testing For Qualification Of Subsea Production System
475(7)
4.1 Qualification
475(1)
4.2 Advanced Testing for Qualification of All-Electric Subsea Production
476(2)
4.3 Advanced Testing for Qualification of Multiphase Pumping
478(2)
4.3.1 Worn Balance Piston Test
479(1)
4.3.2 Slug Test
479(1)
4.4 Advanced Testing for Qualification of Subsea Wet Gas Compressor
480(1)
4.5 Advanced Testing for Qualification of Subsea Transformer
481(1)
5 Installation And Operations For Emergencies
482(9)
5.1 Installation for Subsea Hardware
482(4)
5.1.1 Lifting Method
482(1)
5.1.2 Drilling Riser Method
483(1)
5.1.3 Sheave Method
483(1)
5.1.4 Pencil Buoy Method
484(1)
5.1.5 Subsea 7 Method
484(1)
5.1.6 Pendulous Installation Method
485(1)
5.2 Oil Spill in Gulf of Mexico and Measures Taken against The Accident
486(1)
5.3 Responses to Oil Spill
487(3)
5.3.1 Dispersants
487(1)
5.3.2 In-suit burning of oil
488(1)
5.3.3 Spill surveillance, monitoring and visualization
488(1)
5.3.4 Deepwater subsea waterjet
489(1)
5.3.5 Subsea emergency response system
489(1)
5.4 Responses to Pipeline Emergency
490(1)
5.4.1 Temporary by-pass
490(1)
5.4.2 Installation of a bolted clamp
490(1)
5.4.3 Lift up and repair/Above water repair
490(1)
5.4.4 Remote welding system
490(1)
6 Inspection, Maintenance And Decommissioning Of Subsea Systems
491(5)
6.1 Technology Developments of Subsea Systems Inspection
491(1)
6.1.1 Robotics in Deep Water
491(1)
6.1.2 3D Laser Imaging Systems
492(1)
6.1.3 Non-Destructive Examination of Flexible Risers
492(1)
6.2 Advances in Maintenance of Subsea Systems
492(1)
6.2.1 Risk Based Asset Management (RBAM)
492(1)
6.2.2 Pipeline Maintenance Plan
492(1)
6.2.3 Well Maintenance Plan
492(1)
6.3 Advance in Decommissioning of Subsea Systems
493(2)
6.3.1 Subsea Cutting Technology
493(1)
6.3.2 Sub Bottom Cutter
493(1)
6.3.3 Pipe Cutting Tool
494(1)
6.3.4 Plugging and De-oiling
494(1)
6.3.5 External Latch Mechanical for Well Decommissioning
495(1)
6.4 Conclusion
495(1)
7 Technologies For Hydrates And Other Subsea Resources
496(3)
7.1 Depressurization
496(1)
7.2 Thermal Stimulation
497(1)
7.3 Chemical Inhibitor
497(1)
7.4 Cth-CH4 Replacement
498(1)
8 Pipelines, Risers And Umbilicals
499(9)
8.1 Soil-Structure Interaction
499(2)
8.1.1 Industry Standards
499(1)
8.1.2 Steel Catenary Risers
499(1)
8.1.3 Top Tensioned Risers
500(1)
8.1.4 Hybrid Riser Systems
500(1)
8.1.5 Pipelines
501(1)
8.2 Local/Global Buckling and Propagation
501(2)
8.3 Vortex Induced Vibration of Cylindrical Structure
503(1)
8.4 Dynamic Behavior and Fatigue
504(1)
8.5 Special Issues for Flexible Pipes and Umbilicals
505(3)
9 Reliability And Safety In Subsea System
508(3)
9.1 Introduction
508(1)
9.2 Reliability and Safety Engineering Standards
508(1)
9.2.1 Standards and Codes for Safety and Reliability of Subsea System
508(1)
9.2.2 Update in the Newer Version of API RP 17N
508(1)
9.3 New progress on reliability and safety evaluation of subsea systems
509(2)
10 Conclusions And Recommendations
511(1)
Acknowledgements
512(1)
References
512(13)
Subject Index 525(2)
Author Index 527