Atjaunināt sīkdatņu piekrišanu

E-grāmata: Proceedings of the Pacific Rim Statistical Conference for Production Engineering: Big Data, Production Engineering and Statistics

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : ICSA Book Series in Statistics
  • Izdošanas datums: 27-Mar-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811081682
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : ICSA Book Series in Statistics
  • Izdošanas datums: 27-Mar-2018
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811081682

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents the proceedings of the 2nd Pacific Rim Statistical Conference for Production Engineering: Production Engineering, Big Data and Statistics, which took place at Seoul National University in Seoul, Korea in December, 2016. The papers included discuss a wide range of statistical challenges, methods and applications for big data in production engineering, and introduce recent advances in relevant statistical methods.
Part I Design and Collection of Big Data
1 Bottom-Up Estimation and Top-Down Prediction: Solar Energy Prediction Combining Information from Multiple Sources
3(12)
Youngdeok Hwang
Siyuan Lu
Jae-Kwang Kim
2 The 62% Problems of SN Ratio and New Conference Matrix for Optimization: To Reduce Experiment Numbers and to Increase Reliability for Optimization
15(8)
Teruo Mori
Part II Analytic Methods of Big Data
3 Possible Clinical Use of Big Data: Personal Brain Connectomics
23(10)
Dong Soo Lee
4 The Real-Time Tracking and Alarming the Early Neurological Deterioration Using Continuous Blood Pressure Monitoring in Patient with Acute Ischemic Stroke
33(8)
Youngjo Lee
Maengseok Noh
Il Do Ha
Part III Operation/Production Decision Making
5 Condition Monitoring and Operational Decision-Making in Modern Semiconductor Manufacturing Systems
41(26)
Dragan Djurdjanovic
6 Multistage Manufacturing Processes: Innovations in Statistical Modeling and Inference
67(18)
Hsiang-Ling Hsu
Ching-Kang Ing
Tze Leung Lai
Shu-Hui Yu
Part IV Reliability and Health Management
7 Recent Research in Dynamic Screening System for Sequential Process Monitoring
85(10)
Peihua Qiu
Lu You
8 Degradation Analysis with Measurement Errors
95(30)
Chien-Yu Peng
Hsueh-Fang Ai
Part V Recent Advances in Statistical Methods
9 A Least Squares Method for Detecting Multiple Change Points in a Univariate Time Series
125(20)
Kyu S. Hahn
Won Son
Hyungwon Choi
Johan Lim
10 Detecting the Change of Variance by Using Conditional Distribution with Diverse Copula Functions
145(10)
Jong-Min Kim
Jaiwook Baik
Mitch Reller
11 Clustering Methods for Spherical Data: An Overview and a New Generalization
155(10)
Sungsu Kim
Ashis SenGupta
12 A Semiparametric Inverse Gaussian Model and Inference for Survival Data
165
Sangbum Choi