Atjaunināt sīkdatņu piekrišanu

E-grāmata: Process Modeling and Simulation for Chemical Engineers: Theory and Practice

(Ryerson University, Toronto, Canada)
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Apr-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118914656
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 117,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Apr-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118914656
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a rigorous treatment of the fundamental concepts and techniques involved in process modeling and simulation. The book allows the reader to:

(i)         Get a solid grasp of under-the-hood mathematical results

(ii)        Develop models of sophisticated processes

(iii)       Transform models to different geometries and domains as appropriate

(iv)       Utilize various model simplification techniques

(v)        Learn simple and effective computational methods for model simulation

(vi)       Intensify the effectiveness of their research

Modeling and Simulation for Chemical Engineers: Theory and Practice begins with an introduction to the terminology of process modeling and simulation. Chapters 2 and 3 cover fundamental and constitutive relations, while Chapter 4 on model formulation builds on these relations. Chapters 5 and 6 introduce the advanced techniques of model transformation and simplification. Chapter 7 deals with model simulation, and the final chapter reviews important mathematical concepts.

Presented in a methodical, systematic way, this book is suitable as a self-study guide or as a graduate reference, and includes examples, schematics and diagrams to enrich understanding. End of chapter problems with solutions and computer software available online at www.wiley.com/go/upreti/pms_for_chemical_engineers are designed to further stimulate readers to apply the newly learned concepts.
Preface xiii
Notation xv
1 Introduction 1(16)
1.1 System
1(2)
1.1.1 Uniform System
2(1)
1.1.2 Properties of System
2(1)
1.1.3 Classification of System
3(1)
1.1.4 Model
3(1)
1.2 Process
3(3)
1.2.1 Classification of Processes
4(1)
1.2.2 Process Model
5(1)
1.3 Process Modeling
6(3)
1.3.1 Relations
7(1)
1.3.2 Assumptions
7(1)
1.3.3 Variables and Parameters
8(1)
1.4 Process Simulation
9(2)
1.4.1 Utility
9(1)
1.4.2 Simulation Methods
10(1)
1.5 Development of Process Model
11(2)
1.6 Learning about Process
13(1)
1.7 System Specification
14(2)
Bibliography
16(1)
Exercises
16(1)
2 Fundamental Relations 17(42)
2.1 Basic Form
17(4)
2.1.1 Application
19(2)
2.2 Mass Balance
21(3)
2.2.1 Microscopic Balances
21(2)
2.2.2 Equation of Change for Mass Fraction
23(1)
2.3 Mole Balance
24(2)
2.3.1 Microscopic Balances
24(1)
2.3.2 Equation of Change for Mole Fraction
25(1)
2.4 Momentum Balance
26(7)
2.4.1 Convective Momentum Flux
27(1)
2.4.2 Total Momentum Flux
28(1)
2.4.3 Macroscopic Balance
29(2)
2.4.4 Microscopic Balance
31(2)
2.5 Energy Balance
33(5)
2.5.1 Microscopic Balance
33(2)
2.5.2 Macroscopic Balance
35(3)
2.6 Equation of Change for Kinetic and Potential Energy
38(3)
2.6.1 Microscopic Equation
38(2)
2.6.2 Macroscopic Equation
40(1)
2.7 Equation of Change for Temperature
41(3)
2.7.1 Microscopic Equation
41(1)
2.7.2 Macroscopic Equation
42(2)
2.A Enthalpy Change from Thermodynamics
44(4)
2.B Divergence Theorem
48(2)
2.C General Transport Theorem
50(3)
2.D Equations in Cartesian, Cylindrical and Spherical Coordinate Systems
53(4)
2.D.1 Equations of Continuity
54(1)
2.D.2 Equations of Continuity for Individual Species
54(1)
2.D.3 Equations of Motion
55(1)
2.D.4 Equations of Change for Temperature
56(1)
Bibliography
57(1)
Exercises
57(2)
3 Constitutive Relations 59(20)
3.1 Diffusion
59(1)
3.1.1 Multicomponent Mixtures
60(1)
3.2 Viscous Motion
60(3)
3.2.1 Newtonian Fluids
61(1)
3.2.2 Non-Newtonian Fluids
62(1)
3.3 Thermal Conduction
63(1)
3.4 Chemical Reaction
63(2)
3.5 Rate of Reaction
65(6)
3.5.1 Equations of Change for Moles
66(1)
3.5.2 Equations of Change for Temperature
67(2)
3.5.3 Macroscopic Equation of Change for Temperature
69(2)
3.6 Interphase Transfer
71(1)
3.7 Thermodynamic Relations
72(2)
3.A Equations in Cartesian, Cylindrical and Spherical Coordinate Systems
74(3)
3.A.1 Equations of Continuity for Binary Systems
74(1)
3.A.2 Equations of Motion for Newtonian Fluids
75(1)
3.A.3 Equations of Change for Temperature
76(1)
References
77(1)
Bibliography
77(1)
Exercises
78(1)
4 Model Formulation 79(60)
4.1 Lumped-Parameter Systems
80(10)
4.1.1 Isothermal CSTR
80(3)
4.1.2 Flow through Eccentric Reducer
83(1)
4.1.3 Liquid Preheater
84(3)
4.1.4 Non-Isothermal CSTR
87(3)
4.2 Distributed-Parameter Systems
90(37)
4.2.1 Nicotine Patch
90(3)
4.2.2 Fluid Flow between Inclined Parallel Plates
93(3)
4.2.3 Tapered Fin
96(3)
4.2.4 Continuous Microchannel Reactor
99(4)
4.2.5 Oxygen Transport to Tissues
103(3)
4.2.6 Dermal Heat Transfer in Cylindrical Limb
106(2)
4.2.7 Solvent Induced Heavy Oil Recovery
108(4)
4.2.8 Hydrogel Tablet
112(5)
4.2.9 Neutron Diffusion
117(2)
4.2.10 Horton Sphere
119(3)
4.2.11 Reactions around Solid Reactant
122(5)
4.3 Fluxes along Non-Linear Directions
127(4)
4.3.1 Saccadic Movement of an Eye
128(3)
4.A Initial and Boundary Conditions
131(2)
4.A.1 Initial Condition
131(1)
4.A.2 Boundary Condition
131(1)
4.A.3 Periodic Condition
132(1)
4.B Zero Derivative at the Point of Symmetry
133(1)
4.C Equation of Motion along the Radial Direction in Cylindrical Coordinates
134(3)
References
137(1)
Exercises
137(2)
5 Model Transformation 139(50)
5.1 Transformation between Orthogonal Coordinate Systems
139(16)
5.1.1 Scale Factors
139(3)
5.1.2 Differential Elements
142(1)
5.1.3 Vector Representation
143(1)
5.1.4 Derivatives of Unit Vectors
144(2)
5.1.5 Differential Operators
146(9)
5.2 Transformation between Arbitrary Coordinate Systems
155(6)
5.2.1 Transformation of Velocity
155(1)
5.2.2 Transformation of Spatial Derivatives
156(1)
5.2.3 Correctness of Transformation Matrices
156(5)
5.3 Laplace Transformation
161(17)
5.3.1 Examples
162(2)
5.3.2 Properties of Laplace Transforms
164(4)
5.3.3 Solution of Linear Differential Equations
168(10)
5.4 Miscellaneous Transformations
178(2)
5.4.1 Higher Order Derivatives
178(1)
5.4.2 Scaling
178(1)
5.4.3 Change of Independent Variable
179(1)
5.4.4 Semi-Infinite Domain
179(1)
5.4.5 Non-Autonomous to Autonomous Differential Equation
180(1)
5.A Differential Operators in an Orthogonal Coordinate System
180(6)
5.A.1 Gradient of a Scalar
180(1)
5.A.2 Divergence of a Vector
181(3)
5.A.3 Laplacian of a Scalar
184(1)
5.A.4 Curl of a Vector
184(2)
References
186(1)
Bibliography
186(1)
Exercises
186(3)
6 Model Simplification and Approximation 189(38)
6.1 Model Simplification
189(11)
6.1.1 Scaling and Ordering Analysis
190(3)
6.1.2 Linearization
193(7)
6.2 Model Approximation
200(20)
6.2.1 Dimensional Analysis
201(3)
6.2.2 Model Fitting
204(16)
6.A Linear Function
220(1)
6.B Proof of Buckingham Pi Theorem
221(2)
6.C Newton's Optimization Method
223(1)
References
224(1)
Bibliography
224(1)
Exercises
225(2)
7 Process Simulation 227(68)
7.1 Algebraic Equations
227(14)
7.1.1 Linear Algebraic Equations
227(9)
7.1.2 Non-Linear Algebraic Equations
236(5)
7.2 Differential Equations
241(12)
7.2.1 Ordinary Differential Equations
242(1)
7.2.2 Explicit Runge-Kutta Methods
242(4)
7.2.3 Step-Size Control
246(1)
7.2.4 Stiff Equations
247(6)
7.3 Partial Differential Equations
253(10)
7.3.1 Finite Difference Method
255(8)
7.4 Differential Equations with Split Boundaries
263(5)
7.4.1 Shooting Newton-Raphson Method
264(4)
7.5 Periodic Differential Equations
268(3)
7.5.1 Shooting Newton-Raphson Method
268(3)
7.6 Programming of Derivatives
271(3)
7.7 Miscellanea
274(7)
7.7.1 Integration of Discrete Data
274(2)
7.7.2 Roots of a Single Algebraic Equation
276(2)
7.7.3 Cubic Equations
278(3)
7.A Partial Pivoting for Matrix Inverse
281(1)
7.B Derivation of Newton-Raphson Method
281(3)
7.B.1 Quadratic Convergence
282(2)
7.C General Derivation of Finite Difference Formulas
284(7)
7.C.1 First Derivative, Centered Second Order Formula
285(1)
7.C.2 Second Derivative, Forward Second Order Formula
286(1)
7.C.3 Third Derivative, Mixed Fourth Order Formula
287(2)
7.C.4 Common Finite Difference Formulas
289(2)
References
291(1)
Bibliography
291(1)
Exercises
291(4)
8 Mathematical Review 295(38)
8.1 Order of Magnitude
295(1)
8.2 Big-O Notation
295(1)
8.3 Analytical Function
295(1)
8.4 Vectors
296(6)
8.4.1 Vector Operations
297(5)
8.4.2 Cauchy-Schwarz Inequality
302(1)
8.5 Matrices
302(4)
8.5.1 Terminology
303(1)
8.5.2 Matrix Operations
304(1)
8.5.3 Operator Inequality
305(1)
8.6 Tensors
306(12)
8.6.1 Multilinearity
306(1)
8.6.2 Coordinate-Independence
306(1)
8.6.3 Representation of Second Order Tensor
307(1)
8.6.4 Einstein or Index Notation
308(2)
8.6.5 Kronecker Delta
310(1)
8.6.6 Operations Involving Vectors and Second Order Tensors
310(8)
8.7 Differential
318(4)
8.7.1 Derivative
318(1)
8.7.2 Partial Derivative and Differential
318(1)
8.7.3 Chain Rule of Differentiation
319(2)
8.7.4 Material and Total Derivatives
321(1)
8.8 Taylor Series
322(4)
8.8.1 Multivariable Taylor Series
323(1)
8.8.2 First Order Taylor Expansion
323(3)
8.9 L'Hopital's Rule
326(1)
8.10 Leibniz's Rule
326(1)
8.11 Integration by Parts
327(1)
8.12 Euler' s Formulas
327(1)
8.13 Solution of Linear Ordinary Differential Equations
327(5)
8.13.1 Single First Order Equation
327(1)
8.13.2 Simultaneous First Order Equations
328(4)
Bibliography
332(1)
Index 333
Simant Ranjan Upreti, Department of Chemical Engineering, Ryerson University, Toronto, Canada.