Atjaunināt sīkdatņu piekrišanu

E-grāmata: Processes, Assessment and Remediation of Contaminated Sediments

Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The purpose of this book is to help engineers and scientists better understand contaminated sediment sites and identify and design remedial approaches that are more efficient and effective. Contaminated sediment management is a difficult and costly exercise that is rarely addressed with easily identified and implemented remedies. It is hoped that this book can help identify and implement management approaches that provide an optimal, if not entirely satisfactory, solution to sediment contaminant problems.?

This book helps engineers and scientists to better understand contaminated sediment sites and to identify and design remedial approaches that are more efficient and effective.
Chapter 1 Introduction 1(12)
1.1 History of Sediment Contamination
1(2)
1.2 Framework for Managing Contaminated Sediments
3(2)
1.3 Processes and Risks of Contaminated Sediments
5(2)
1.4 Managing Risks of Contaminated Sediments
7(2)
1.5 Example: Comparison of Remedial Alternatives
9(2)
1.6 Summary
11(1)
References
11(2)
Chapter 2 Sediment And Contaminant Processes 13(12)
2.1 Introduction
13(1)
2.2 Sediment and Contaminant Characteristics
14(3)
2.2.1 Sediment Characteristics
14(1)
2.2.2 Contaminant Characteristics
15(2)
2.3 Sediment and Contaminant Transport Processes
17(6)
2.3.1 Sediment Erosion and Deposition
17(1)
2.3.2 Porewater Diffusion and Advection
17(2)
2.3.3 Bioturbation
19(3)
2.3.4 Hyporheic Exchange
22(1)
2.4 Summary
23(1)
References
23(2)
Chapter 3 Fundamentals Of Sediment Transport 25(56)
3.1 Introduction
25(3)
3.1.1 Sediment-Related Engineering Problems
25(1)
3.1.2 Sediment Transport Terminology
26(1)
3.1.3 Response of Sediment to Driving Forces
27(1)
3.2 Sediment Transport Processes
28(22)
3.2.1 Sediment Properties
28(5)
3.2.2 Noncohesive Sediment Transport
33(7)
3.2.3 Cohesive Sediment Transport
40(10)
3.3 Sediment Transport Assessment
50(9)
3.3.1 Assessment Methodology
50(5)
3.3.2 Data Needs for Most Sites
55(1)
3.3.3 Determination of Sediment Erodibility
56(3)
3.4 Sediment Transport Modeling
59(13)
3.4.1 Overview of Modeling
59(1)
3.4.2 Hydrodynamic Modeling
60(4)
3.4.3 Sediment Transport Modeling
64(8)
3.5 Summary
72(1)
References
72(5)
Appendix 3A: Calculation Of Combined Current-Wave Bed Shear Stress
77(4)
Chapter 4 The Mechanics Of Soft Cohesive Sediments During Early Diagenesis 81(26)
4.1 Introduction
81(1)
4.2 Physical Models (Rheology) of Materials
82(10)
4.2.1 Conceptual Models
82(1)
4.2.2 Phenomenological Formulas and Constants
83(1)
4.2.3 Phenomenological Constants for Sediments
84(5)
4.2.4 The Origin of Sediment Mechanical Properties
89(1)
4.2.5 The Mechanical Equations for a Deforming Body
90(2)
4.3 Mechanical Processes in Natural Aquatic Sediments
92(8)
4.3.1 One-Dimensional Compaction with Sedimentation
92(3)
4.3.2 The Growth of Methane Bubbles
95(1)
4.3.3 Methane Bubble Rise
96(2)
4.3.4 Animal Motion in Sediments
98(2)
4.4 Summary
100(1)
References
101(4)
Appendix 4A
105(2)
Chapter 5 Advances In Risk Assessment In Support Of Sediment Risk Management 107(24)
5.1 Introduction
107(3)
5.1.1 Focus of this
Chapter
109(1)
5.2 Overview of Risk Assessment for Sediments
110(3)
5.2.1 Human Health Risk Assessment
110(1)
5.2.2 Ecological Risk Assessment
111(2)
5.3 Defining "Risk Zones" to Communicate Risk
113(10)
5.3.1 Conceptual Risk Zone Approach
113(1)
5.3.2 Developing Risk Zones for Human Receptors
114(1)
5.3.3 Developing Risk Zones for Ecological Receptors
114(4)
5.3.4 Use of ROC Curves for Defining Chemical Risk Zones
118(5)
5.4 Utilizing Net Environmental Benefits Analysis and Relative Environmental Benefits Evaluation for Judging Remedial Alternatives
123(5)
5.5 A Path Forward
128(1)
References
128(3)
Chapter 6 Assessing Biological Effects 131(46)
6.1 Introduction
131(2)
6.2 Sediment Quality Guidelines
133(2)
6.3 Laboratory Sediment Toxicity Tests
135(6)
6.4 In Situ Sediment Toxicity Tests
141(3)
6.5 Mesocosm Studies
144(1)
6.6 Toxicity Identification Evaluation
145(1)
6.7 Histopathological, Cellular and Molecular Assessments
146(2)
6.8 Measuring and Interpreting Bioaccumulation
148(3)
6.9 Benthic Infaunal Community Condition as Indicator of Sediment Quality
151(4)
6.10 Genetics of Acclimation and Adaptation
155(1)
6.11 Physical Stress Due to Sediments
156(1)
6.12 Integrating Lines of Evidence for Assessing Biological Effects
157(2)
6.13 Assessment of the Biological Effects Associated with In Situ Sediment Remediation Measures
159(2)
6.14 Closing Remarks and Path Forward
161(1)
References
162(15)
Chapter 7 Assessing Bioavailability Of Hydrophobic Organic Compounds And Metals In Sediments Using Freely Available Porewater Concentrations 177(20)
7.1 Introduction
177(2)
7.2 Sediment Porewater Concentrations as Indicator of Bioavailability
179(4)
7.2.1 Hydrophobic Organic Compounds
179(3)
7.2.2 Metals
182(1)
7.3 Assessing Bioavailability with Equilibrium Partitioning Theory
183(2)
7.3.1 Equilibrium Partitioning for HOCs
183(1)
7.3.2 Equilibrium Partitioning for Metals-AVS/SEM Model
184(1)
7.4 Biotic Ligand Model (BLM) to Estimate Bioavailability of Metals
185(1)
7.5 Passive Sampling for Measuring Porewater Concentrations and Assessing Bioavailability
186(4)
7.5.1 Passive Sampling for HOCs
186(3)
7.5.2 Passive Sampling for Metals
189(1)
7.6 Summary
190(1)
References
191(6)
Chapter 8 Risk Management For Contaminated Sediments 197(30)
8.1 Risk Management Challenges
197(3)
8.1.1 The Problem Setting
197(1)
8.1.2 Technical Aspects of the Risky Business of Sediment Management
198(2)
8.2 The Risk Management Process
200(3)
8.3 Advancing Risk Management Practice
203(17)
8.3.1 Ten Guidelines for Robust Risk Management
204(16)
8.4 The Path to More Effective Risk Management
220(2)
8.4.1 Structure
220(1)
8.4.2 Quantitation
220(1)
8.4.3 Innovation
221(1)
8.5 Conclusions
222(1)
References
223(4)
Chapter 9 Monitored Natural Recovery 227(36)
9.1 Introduction
227(1)
9.2 MNR and Conceptual Site Models
228(8)
9.2.1 Contaminant Characteristics Affecting Natural Recovery Processes
229(4)
9.2.2 Site Conditions Affecting Natural Recovery Processes
233(1)
9.2.3 Implications of Future Site Conditions
234(2)
9.3 Lines of Evidence for Evaluating MNR Feasibility
236(12)
9.3.1 Temporal Trend Analysis
238(1)
9.3.2 Source Control
239(1)
9.3.3 Chemical Transformation
240(1)
9.3.4 Reduction in Contaminant Bioavailability/Mobility
241(1)
9.3.5 Physical Isolation, Dispersion, and Reduced Contaminant Exposures
242(6)
9.4 Enhanced MNR
248(3)
9.4.1 Thin-Layer Placement and Stability
248(1)
9.4.2 Impact on Benthic Communities
249(1)
9.4.3 Source Control Considerations
250(1)
9.5 Monitoring Natural Recovery
251(5)
9.5.1 Establishing Monitoring Goals
251(1)
9.5.2 MNR Monitoring Case Studies
252(4)
9.6 Conclusion
256(1)
References
256(7)
Chapter 10 IN Situ Biotransformation Of Contaminants In Sediments 263(42)
10.1 Introduction
263(1)
10.2 Basics of In Situ Biotransformation
264(6)
10.2.1 Environmental Conditions Influencing Biotransformation
264(4)
10.2.2 Intrinsic Biotransformation
268(1)
10.2.3 Biostimulation
268(1)
10.2.4 Bioaugmentation
269(1)
10.2.5 Metabolic Versus Co-metabolic Processes
269(1)
10.3 Selected Contaminant Biotransformation Pathways
270(19)
10.3.1 PCBs
270(5)
10.3.2 PAHs
275(5)
10.3.3 Mercury
280(6)
10.3.4 Chlorinated Ethenes in Groundwater Seeps
286(3)
10.4 Incorporating In Situ Biotransformation into Sediment Remediation
289(3)
10.4.1 Monitored Natural Recovery
289(1)
10.4.2 Dredging
290(1)
10.4.3 In Situ Capping
290(2)
10.5 Conclusions and Opportunities for Further Development
292(2)
References
294(11)
Chapter 11 IN Situ Treatment For Control Of Hydrophobic Organic Contaminants Using Sorbent Amendment: Theoretical Assessments 305(20)
11.1 Introduction
305(1)
11.2 Benthic Organism Uptake of Persistent Organic Contaminants: Biodynamic Modeling
306(3)
11.3 Mechanisms of In Situ Stabilization and Reduction of Bioavailability
309(2)
11.4 Modeling the Mass Transfer of Hydrophobic Organic Contaminant in AC-Amended Sediments
311(4)
11.4.1 Model Concept for a Well-Mixed System
311(1)
11.4.2 Model Calibration for a Well-Mixed System
312(1)
11.4.3 In Situ Treatment Model for a Briefly Mixed or Un-mixed System
313(2)
11.4.4 Model Extension
315(1)
11.5 Effects of Mixing Regime, Particle Size, and Dose of AC Sorbents in Sediment for In Situ Stabilization
315(4)
11.5.1 Mixing Regime
315(2)
11.5.2 Particle Size
317(1)
11.5.3 Dose of Sorbents
318(1)
11.6 Conclusions
319(2)
References
321(4)
Chapter 12 Capping For Remediation Of Contaminated Sediments 325(40)
12.1 Introduction
325(1)
12.2 Capping Materials
326(4)
12.2.1 Sand
327(1)
12.2.2 Apatites
327(1)
12.2.3 Zeolites and Organoclays
328(1)
12.2.4 Activated Carbon
328(1)
12.2.5 Clay Materials
329(1)
12.2.6 Nutrients
329(1)
12.2.7 Zero-Valent Iron
329(1)
12.3 Sorption of Contaminants to Sediments and Cap Materials
330(3)
12.3.1 Organic Compounds Sorption to Sediments and Capping Materials
331(1)
12.3.2 Metals Sorption to Sediments and Capping Materials
332(1)
12.4 Site Conditions and Characterization
333(5)
12.4.1 Remedial Objective Identification
333(1)
12.4.2 Hydrodynamic Characterization
334(1)
12.4.3 Biological Characterization
335(1)
12.4.4 Geotechnical Characterization
336(1)
12.4.5 Gas Ebullition
337(1)
12.5 Design of Caps for Sediment Remediation
338(19)
12.5.1 Contaminant Transport Modeling Concepts
338(3)
12.5.2 Parameter Estimation
341(2)
12.5.3 Transient Design Model for a Single Chemical Isolation Layer
343(2)
12.5.4 Steady-State Design Model for Two Layers
345(4)
12.5.5 Numerical Modeling
349(3)
12.5.6 Additional Design Considerations for Active Caps
352(4)
12.5.7 Design of Erosion Control and Habitat Layers
356(1)
12.6 Monitoring Cap Performance
357(1)
12.7 Summary
358(1)
References
358(7)
Chapter 13 Sediment Dredging, Treatment And Disposal 365(28)
13.1 Introduction
365(3)
13.1.1 Sediment Removal as a Remediation Approach
365(1)
13.1.2 Definitions and Objectives
366(1)
13.1.3 Initial Evaluations
367(1)
13.2 Site and Sediment Assessment Considerations
368(2)
13.3 Performance Standards
370(1)
13.4 Dredging Equipment Capabilities and Selection
370(3)
13.5 Resuspension and Contaminant Release
373(1)
13.6 Residual Sediments
374(1)
13.6.1 Predicting Dredging Residuals
375(1)
13.7 Dredging Operations
375(2)
13.8 Monitoring
377(1)
13.9 Management Actions and Controls
378(3)
13.9.1 Production Management Actions
378(1)
13.9.2 Resuspension/Release Controls
378(1)
13.9.3 Residuals Management and Controls
379(2)
13.9.4 Adaptive Management
381(1)
13.10 Experiences with Environmental Dredging
381(2)
13.11 Disposal and Treatment Options
383(5)
13.11.1 Transport, Staging and Dewatering
383(1)
13.11.2 Ex Situ Sediment Treatment
384(1)
13.11.3 Pretreatment
385(1)
13.11.4 Sediment Treatment Technologies
386(1)
13.11.5 Sediment Disposal
386(1)
13.11.6 Sanitary/Hazardous Waste Landfills
387(1)
13.11.7 Confined Disposal Facilities (CDFs)
387(1)
13.11.8 Contained Aquatic Disposal (CAD)
387(1)
13.12
Chapter Highlights
388(1)
References
389(4)
Chapter 14 Monitoring Remedial Effectiveness 393(22)
14.1 Introduction
393(1)
14.2 Monitoring Phases and Timeframes
394(1)
14.2.1 Monitoring Phases
394(1)
14.2.2 Timeframes
395(1)
14.3 Effective Compared to What?
395(4)
14.3.1 State Your Objective
395(1)
14.3.2 Establish a Baseline
396(2)
14.3.3 Develop a Plan
398(1)
14.4 Monitoring Tools and Approaches
399(1)
14.5 Selecting Relevant Indicators of Effectiveness
400(2)
14.6 Developing a Monitoring Plan: Data Quality and Data Management
402(1)
14.7 Adaptive Monitoring and Decision Criteria
403(1)
14.8 Case Studies: Lines of Evidence in Remedy Effectiveness Monitoring
404(7)
14.8.1 Sediment Contaminant Chemistry, New Bedford Harbor, Massachusetts
404(1)
14.8.2 Water Column Contaminant Concentrations, Hudson River, New York
405(1)
14.8.3 Contaminant Concentrations in Porewater, Grasse River, New York, Activated Carbon Pilot
406(1)
14.8.4 Benthic Toxicity, Ward Cove, Ketchikan, Alaska
407(1)
14.8.5 Contaminant Bioaccumulation Analyses, Grasse River, New York, Activated Carbon Pilot
408(1)
14.8.6 Contaminant Concentrations in Resident Organisms, Cumberland Bay, Lake Champlain, New York
409(2)
14.9 Summary
411(1)
References
411(4)
Chapter 15 Contaminated Sediment Research And Development Needs 415(16)
15.1 Introduction
415(1)
15.2 Framework for Sediments Research
415(1)
15.3 Research Needs
416(12)
15.3.1 Contaminant Sources, Behavior and Fate
416(3)
15.3.2 Risk Characterization and Monitoring
419(4)
15.3.3 Remediation and Management
423(4)
15.3.4 Technology Transfer and Education
427(1)
15.3.5 Summary
427(1)
References
428(3)
Appendix A: List Of Acronyms, Abbreviations, And Symbols 431(4)
Appendix B: Glossary 435(20)
Index 455