Atjaunināt sīkdatņu piekrišanu

Progress in Nanophotonics 2 2013 ed. [Hardback]

Edited by
  • Formāts: Hardback, 169 pages, height x width: 235x155 mm, weight: 4026 g, 32 Illustrations, color; 112 Illustrations, black and white; XIII, 169 p. 144 illus., 32 illus. in color., 1 Hardback
  • Sērija : Nano-Optics and Nanophotonics
  • Izdošanas datums: 21-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642357180
  • ISBN-13: 9783642357183
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 169 pages, height x width: 235x155 mm, weight: 4026 g, 32 Illustrations, color; 112 Illustrations, black and white; XIII, 169 p. 144 illus., 32 illus. in color., 1 Hardback
  • Sērija : Nano-Optics and Nanophotonics
  • Izdošanas datums: 21-Mar-2013
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642357180
  • ISBN-13: 9783642357183
Citas grāmatas par šo tēmu:
This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems.

This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems. It begins with a review of near-field excitation dynamics in molecules. Further topics include: wavelength up-converting a phonon-assisted excitation process with degenerate beams and non-degenerate beams in dye grains, a fabrication method of semiconductor quantum dots including self-assembly of InAs quantum dots based on the Stranski-Krastanov growth mode, single-nanotube spectroscopy and time-resolved spectroscopy for studying novel excitonic properties of single-walled carbon nanotubes. The striking features of ecxitons in the carbon nanotube, multiple-exciton states, and microfluidic and extended-nano fluidic techniques. These topics are reviewed by nine leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.
1 Near-Field Excitation Dynamics in Molecules: Nonuniform Light-Matter Interaction Theory Beyond a Dipole Approximation
1(32)
Katsuyuki Nobusada
1.1 Introduction
1(3)
1.2 Theory
4(6)
1.2.1 Multipolar Hamiltonian
4(2)
1.2.2 A Molecule Interacting with a Nonuniform Near-Field
6(2)
1.2.3 Near-Field Radiated from an Oscillating Dipole
8(1)
1.2.4 Light-Matter Interaction in the Kohn-Sham DFT Approach
9(1)
1.3 Computational Application
10(2)
1.3.1 Time-Dependent Kohn-Sham Approach in Real Space
10(2)
1.4 High-Harmonic-Generation Spectra Induced by the Near-Field Excitation
12(9)
1.4.1 Molecular System and Computations
12(1)
1.4.2 Near-Field Excitation Dynamics
13(5)
1.4.3 Even and Odd Harmonics
18(1)
1.4.4 Control of Harmonic Generation by Interference
19(1)
1.4.5 Concluding Remarks
20(1)
1.5 Near-Field Induced Optical Force in a Metal Nanoparticle and C60
21(9)
1.5.1 Brief Review of Optical Force
21(1)
1.5.2 Optical Force Exerted on a Particle
22(1)
1.5.3 Model System and Computations
23(2)
1.5.4 Optical Force on a Silver Nanoparticle
25(4)
1.5.5 Optical Force on C60
29(1)
1.5.6 Concluding Remarks
29(1)
1.6 Summary
30(3)
References
30(3)
2 Novel Excitonic Properties of Carbon Nanotube Studied by Advanced Optical Spectroscopy
33(38)
Kazunari Matsuda
2.1 Basic Optical Properties of Carbon Nanotube
33(7)
2.1.1 Structure of Carbon Nanotube
33(1)
2.1.2 Electronic Structure of Graphene
34(1)
2.1.3 Electronic Structure of Carbon Nanotube
35(2)
2.1.4 Optical Spectroscopy of Carbon Nanotubes
37(1)
2.1.5 Exciton State in Carbon Nanotubes
38(1)
2.1.6 Exciton Structures in Carbon Nanotubes
39(1)
2.2 Novel Excitonic Properties of Carbon Nanotube
40(12)
2.2.1 Single Carbon Nanotube Spectroscopy for Revealing Exciton Structures
40(2)
2.2.2 Singlet-Bright and Dark Exciton Revealed by Magneto-PL Spectroscopy
42(3)
2.2.3 Triplet and K-Momentum Dark Exciton States
45(4)
2.2.4 Exciton-Complex in Carbon Nanotubes
49(3)
2.3 Novel Exciton Dynamics of Carbon Nanotube
52(15)
2.3.1 Exciton Relaxation Dynamics Between Bright and Dark State
52(3)
2.3.2 Radiative Lifetime of Bright Exciton States
55(5)
2.3.3 Exciton-Exciton Interaction in Carbon Nanotube
60(4)
2.3.4 Multi-Exciton Generation in Carbon Nanotube
64(3)
2.4 Summary
67(4)
References
67(4)
3 Fabrication of Ultrahigh-Density Self-assembled InAs Quantum Dots by Strain Compensation
71(26)
Kouichi Akahane
3.1 Semiconductor Quantum Dot
71(26)
3.1.1 Self-assembled Semiconductor Quantum Dot
73(2)
3.1.2 Fabrication of Ultrahigh-Density QDs Using Strain-Compensation Technique
75(8)
3.1.3 Applications Using Ultrahigh-Density QDs
83(12)
3.1.4 Summary
95(1)
References
95(2)
4 Wavelength Up-Conversion Using a Phonon-Assisted Excitation Process and Its Application to Optical Pulse-Shape Measurement
97(24)
Hiroyasu Fujiwara
4.1 Introduction
97(1)
4.2 Multi-step Phonon-Assisted Processes with Degenerate Beams
98(10)
4.2.1 Principles of Multi-step Phonon-Assisted Process
99(3)
4.2.2 Sample Preparation
102(1)
4.2.3 Comparison Between Fluorescence and Emitted Spectra Induced by Phonon-Assisted Process
103(1)
4.2.4 Excitation Intensity Dependence
104(1)
4.2.5 Lifetime of the Intermediate Excited State
105(3)
4.3 Multi-step Phonon-Assisted Process with Two Nondegenerate Beams
108(7)
4.3.1 Emitted Spectra Induced by Phonon-Assisted Process with Nondegenerate Beams
109(2)
4.3.2 Excitation Intensity Dependence
111(3)
4.3.3 Dependence of the Difference in Polarization Angle Between Two Nondegenerate Beams
114(1)
4.4 Application to Optical Pulse Shape Measurement
115(4)
4.4.1 Experimental Setup
116(1)
4.4.2 Experimental Results
117(2)
4.5 Summary
119(2)
References
120(1)
5 Micro and Extended-Nano Fluidics and Optics for Chemical and Bioanalytical Technology
121(44)
Kazuma Mawatari
Yuriy Pihosh
Hisashi Shimizu
Yutaka Kazoe
Takehiko Kitamori
5.1 Introduction
121(2)
5.2 Technology and Applications by Microfluidics
123(13)
5.2.1 Integration Methods
123(4)
5.2.2 Optical Detection Method for Single Molecule Detection
127(5)
5.2.3 Applications
132(4)
5.3 Extended-Nano Fluidics and Optics
136(26)
5.3.1 Introduction
136(2)
5.3.2 Optical Detection Methods
138(9)
5.3.3 Liquid and Optical Properties
147(13)
5.3.4 Applications
160(2)
5.4 Summary
162(3)
References
162(3)
Index 165