Atjaunināt sīkdatņu piekrišanu

Progress in Ultrafast Intense Laser Science VI 2010 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 237 pages, height x width: 235x155 mm, weight: 600 g, XVI, 237 p., 1 Hardback
  • Sērija : Progress in Ultrafast Intense Laser Science 99
  • Izdošanas datums: 30-Nov-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642150535
  • ISBN-13: 9783642150531
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 237 pages, height x width: 235x155 mm, weight: 600 g, XVI, 237 p., 1 Hardback
  • Sērija : Progress in Ultrafast Intense Laser Science 99
  • Izdošanas datums: 30-Nov-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642150535
  • ISBN-13: 9783642150531
Citas grāmatas par šo tēmu:
We arepleasedtopresentthesixthvolumeofProgressinUltrafastIntenseLaserS- ence. As the frontiers of ultrafast intense laser science rapidly expand ever outward, there continues to be a growing demand for an introduction to this interdisciplinary research eldthatisatoncewidelyaccessibleandcapableofdeliveringcutting-edge developments. Our series aims to respond to this call by providing a compilation of concise review-style articles written by researchers at the forefront of this research ?eld, so that researcherswith differentbackgroundsas well as graduatestudentscan easily grasp the essential aspects. As in previousvolumesof PUILS, each chapterof this bookbeginswith an int- ductory part, in which a clear and concise overview of the topic and its signi cance is given, and moves onto a description of the authors' most recent research results. All the chapters are peer-reviewed. The articles of this sixth volume cover a diverse rangeoftheinterdisciplinaryresearch eld,andthetopicsmaybegroupedintothree categories: responses of molecules to ultrashort intense laser pulses (Chaps. 1 - 4), generation and characterization of attosecond pulses and high-order harmonics (Chaps. 5 - 8), and lamentationand laser-plasma interactionand their applications (Chaps. 9 - 11).
1 Laser-Induced Coulomb Explosion Ultrafast Imaging of Molecules
1(20)
C. Cornaggia
1.1 Introduction
1(3)
1.2 Experimental Procedures
4(3)
1.3 Lifetimes of Dissociating States of N22+
7(2)
1.4 Double Ionization of H2 at 10 and 40 fs
9(4)
1.5 Coulomb Explosion of N2 at 10 and 40 fs
13(3)
1.6 Conclusion
16(5)
References
18(3)
2 Quantum Switching of Magnetic Fields by Circularly Polarized Re-Optimized π Laser Pulses: From One-Electron Atomic Ions to Molecules
21(24)
Ingo Barth
Jorn Manz
2.1 Introduction
22(3)
2.2 Survey on Quantum Switching-on the Ring Currents and Magentic Fields
25(11)
2.3 Quantum Switching the Directions of Ring Currents and Magnetic Fields
36(1)
2.4 Conclusions
37(8)
References
41(4)
3 Alignment and Orientation of Hexapole State-Selected Molecules
45(30)
Arnaud Rouzee
Arjan Gijsbertsen
Marc J. J. Vrakking
3.1 Introduction
45(3)
3.2 Molecules
48(2)
3.3 Hexapole State Selection
50(3)
3.4 Interactions with an Intense Laser Field
53(2)
3.5 Numerical Example in Several Polar Molecules
55(4)
3.6 Experimental Setup
59(2)
3.7 Sign of the NO Dipole Moment
61(1)
3.8 Impulsive Alignment and Orientation
62(9)
3.8.1 Laser Field-Free Alignment
62(3)
3.8.2 Laser Field-Free Orientation
65(4)
3.8.3 Orientation and Alignment with Shaped Intense Laser Pulse
69(2)
3.9 Conclusions and Remarks
71(4)
References
72(3)
4 Quantum Interference in Ionization of Excited Molecules: X-Ray Emission Control and Dynamic Imaging
75(14)
Mikhail Yu. Emelin
Mikhail Yu. Ryabikin
Alexander M. Sergeev
4.1 Introduction
75(1)
4.2 Attosecond Pulse Production from Electronically Excited Atoms and Moleculers
76(5)
4.2.1 Roles of Different Types of Transitions in HHG
77(1)
4.2.2 Highly Efficient HHG from Excited Atoms and Molecules Using Continuum-Continuum Transitions
78(1)
4.2.3 Single Attosecond Pulse Production: Bremsstrahlung vs. Recombination Radiation
78(3)
4.3 Quantum Interference in Ionization of Stretched Molecules: Application to the X-Ray Emission Control
81(6)
4.3.1 Numerical Results
81(3)
4.3.2 Theory
84(3)
4.4 Quantum Interference in Ionization of Stretched Molecules: Application to the Molecular Dynamic Imaging
87(1)
4.5 Conclusions
87(2)
References
87(2)
5 Single Isolated Attosecond Pulses Generation with Double Optical Gating
89(24)
Ximao Feng
Steve Gilbertson
Hiroki Mashiko
Sabih Khan
He Wang
Michael Chini
Yi Wu
Zenghu Chang
5.1 Introduction
89(1)
5.2 Principle of Double Optical Gating
90(6)
5.2.1 Two-Color Gating
91(1)
5.2.2 Polarization Gating
91(2)
5.2.3 DOG
93(1)
5.2.4 GDOG
94(2)
5.3 Carrier-Envelope Phase Stabilization of Oscillator, Amplifier and Hollow-Core Fiber Beams
96(2)
5.4 Experimental Setup
98(2)
5.4.1 DOG/GDOG Optics
99(1)
5.4.2 XUV Grating Spectrometer
99(1)
5.4.3 Attosecond Streak Camera
100(1)
5.5 Results and Discussion
100(6)
5.5.1 Study of Single Attosecond Pulse Generation with XUV Grating Spectrometer
101(2)
5.5.2 Measurement with CRAB
103(3)
5.6 Complete Reconstruction of Attosecond Bursts
106(1)
5.7 Experimenting with Single Attosecond Pulses
107(2)
5.8 Conclusion
109(4)
References
110(3)
6 Toward the Generation of Isolated Attosecond Pulses in the Water Window
113(16)
Ruxin Li
Zhinan Zeng
Pu Zou
Yuxing Leng
Chunmei Zhang
Zhizhan Xu
6.1 Introduction
113(1)
6.2 Generation of Isolated Attosecond Pulses in the Water Window
114(7)
6.3 Generation of Tunable NIR Laser Pulses with Stabilized CEP
121(5)
6.4 Conclusions
126(3)
References
126(3)
7 High Harmonic Generation by Plasmonic Enhancement of Femtosecond Pulse Laser
129(16)
Seungchul Kim
In-Yong Park
Joonhee Choi
Seung-Woo Kim
7.1 Introduction
129(2)
7.2 Geometrical Design of Bow-Tie Nanostructure
131(5)
7.3 Fabrication of Bow-Tie Nanostructure
136(2)
7.4 Experiments of High Harmonic Generation
138(4)
7.5 Conclusion
142(3)
References
144(1)
8 High-Order Harmonic Generation from Nanostructured Material Using the Laser-Plasma Method
145(16)
T. Ozaki
R.A. Ganeev
L.B. Elouga Bom
J. Abdul-Hadi
8.1 Introduction
145(1)
8.2 Experimental Setup
146(1)
8.3 Results
147(12)
8.3.1 Silver Nanoparticles
147(4)
8.3.2 Other Nanoparticles
151(2)
8.3.3 C60 Fullerenes
153(6)
8.4 Conclusions
159(2)
References
159(2)
9 Filamentation in Ultrafast Laser Material Processing
161(22)
Wataru Watanabe
Takayuki Tamaki
Yasuyuki Ozeki
Kazuyoshi Itoh
9.1 Introduction
161(1)
9.2 Filamentation
162(1)
9.2.1 Filamentation and Supercontinuum Generation
162(1)
9.2.2 Control of Multiple Filaments
162(1)
9.3 Filamentation and Bulk Modifications
163(6)
9.3.1 Filamentation and Bulk Modifications
163(1)
9.3.2 Femtosecond Filamentary Track
164(5)
9.4 Photonic Device Fabrication Using Filamentation
169(5)
9.4.1 Fabrication of Waveguide Device
169(3)
9.4.2 Fabrication of Diffractive Optical Element
172(2)
9.4.3 Fabrication of Diffractive Optical Elements in Polymer Materials
174(1)
9.5 Microwelding Using Filamentation
174(5)
9.5.1 Femtosecond Laser Welding of Transparent Materials
174(5)
9.6 Conclusion
179(4)
References
179(4)
10 Plasma Electron Kinetics and Distribution Functions in Laser Fields
183(28)
Gaetano Ferrante
Roberto Luigi Oliveri
10.1 Introduction
183(2)
10.2 Theoretical Framework
185(2)
10.3 Distribution Function in a Weak Field
187(7)
10.3.1 Case α ≥ 1
190(1)
10.3.2 Case α << 1
191(1)
10.3.3 Case of Arbitrary α
192(2)
10.4 Distribution Function in a Strong Field
194(3)
10.4.1 Analytical Investigations
194(2)
10.4.2 Numerical Investigations
196(1)
10.5 Main Results of Numerical Investigations
197(9)
10.5.1 Characteristic Parameters and Their Behaviour in the Course of Laser-Plasma Interaction
197(2)
10.5.2 Results of Selected Calculations. EDF Shape Evolution and Role of e-e Collisions
199(4)
10.5.3 "Angular" Electron Distribution Function
203(3)
10.6 Conclusions
206(5)
References
208(3)
11 Ion Acceleration by Ultra-Intense Lasers: Analysis of Contrast Effects
211(22)
Alessandro Flacco
Dimitri Batani
11.1 Laser Proton Acceleration
212(1)
11.2 Laser Interaction with the Solid: Creation of a Preplasma
213(2)
11.3 Effects Induced on the Front Surface
215(3)
11.4 Effects Induced on the Back Surface
218(2)
11.5 Laser-Produced Shocks and Proton Generation
220(2)
11.6 Detailed Hydrodynamics Simulations
222(2)
11.7 Two-Dimensional Effects and Proton Beam Deviation
224(2)
11.8 Experimental Results
226(2)
11.9 Conclusions
228(5)
References
229(4)
Index 233