Atjaunināt sīkdatņu piekrišanu

Progress in Ultrafast Intense Laser Science VIII 2012 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 204 pages, height x width: 235x155 mm, weight: 494 g, XII, 204 p., 1 Hardback
  • Sērija : Springer Series in Chemical Physics 103
  • Izdošanas datums: 04-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642287255
  • ISBN-13: 9783642287251
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 204 pages, height x width: 235x155 mm, weight: 494 g, XII, 204 p., 1 Hardback
  • Sērija : Springer Series in Chemical Physics 103
  • Izdošanas datums: 04-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642287255
  • ISBN-13: 9783642287251

The eighth volume in the essential PUILS series covering the latest laser technologies, this publication explains methods for characterizing ultrashort laser pulses and describes the applications of laser plasma formation and laser acceleration.



The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.
1 Probing Electron Dynamics in Simple Molecules with Attosecond Pulses
1(28)
Paula Riviere
Alicia Palacios
Jhon Fredy Perez-Torres
Fernando Martin
1.1 Introduction
1(2)
1.2 Probing Electron Dynamics with Ultrashort Pulses
3(5)
1.2.1 Intense IR Fields
4(1)
1.2.2 XUV Fields
4(1)
1.2.3 SAP + IR
5(1)
1.2.4 APT+IR
6(2)
1.3 Theoretical Method
8(9)
1.3.1 Time-Dependent Schrodinger Equation
8(1)
1.3.2 Molecular Electronic and Nuclear States
9(1)
1.3.3 Time-Dependent Close-Coupling Method
10(1)
1.3.4 Asymmetric Electron Ejection
11(6)
1.4 H2 and D2 Dissociative Ionization by Two-Color (XUV + IR) Fields
17(8)
1.4.1 Single Attosecond Pulse plus Infrared: Electron Localization
17(3)
1.4.2 Attosecond Pulse Train plus Infrared: Role of Different States
20(5)
1.5 Conclusions and Outlook
25(4)
References
26(3)
2 Enhanced Ionization of Molecules in Intense Laser Fields
29(18)
Andre D Bandrauk
Francois Legare
2.1 Introduction
29(2)
2.2 Quasistatic Models: Diatomic One-Electron Systems in Strong Fields
31(7)
2.3 Double Ionization in Strong Fields
38(3)
2.4 Coulomb Explosion Imaging of CREI in Triatomics
41(6)
References
44(3)
3 Ultrafast Optical Gating by Molecular Alignment
47(32)
Heping Zeng
Peifen Lu
Jia Liu
Wenxue Li
3.1 Introduction
48(1)
3.2 Principle of Ultrafast Molecular Gating
49(6)
3.2.1 Molecular Alignment Based Ultrafast Birefringence
49(1)
3.2.2 Dynamics of Molecular Rotational Wave-Packets
49(2)
3.2.3 The Molecular Alignment Matrices
51(1)
3.2.4 Weak Field Polarization Spectroscopic Technique
52(1)
3.2.5 Alignment-Induced Polarization Optical Gating
53(2)
3.3 Molecular-Alignment-Based Cross-Correlation Frequency-Resolved Optical Gating
55(12)
3.3.1 Frequency-Resolved Optical Gating
55(4)
3.3.2 XFROG by Molecular Alignment Optical Gating
59(3)
3.3.3 Experimental Results by M-XFROG
62(2)
3.3.4 Discussions on M-XFROG Applicability
64(3)
3.4 Ultrafast Optical Imaging by Molecular Alignment
67(7)
3.5 Conclusions
74(5)
References
75(4)
4 Experiments in Population Trapping in Atoms and Molecules by an Intense Short Laser Pulse
79(18)
S.L. Chin
A. Azarm
H.L. Xu
T.J. Wang
M. Sharifi
A. Talebpour
4.1 Introduction
80(1)
4.2 Qualitative Physics of Population Trapping
80(2)
4.3 Previous Experimental Observation
82(2)
4.4 Physical Picture of Molecular Trapping
84(1)
4.5 More Recent Work in Trapping
85(1)
4.6 Probing Population Trapping in Nitrogen Using 400 nm Pulses
86(4)
4.7 Probing Trapping in Nitrogen Using 1,338 nm Pulses
90(1)
4.8 Probing Trapping in Nitrogen and Other Gases Using THz Pulses
91(1)
4.9 Trapping: A Universal Phenomenon for All Atoms and Molecules Including Biomolecules
92(1)
4.10 Excitation of Super-Excited States Through Trapping by a Strong Laser Field
93(1)
4.11 Conclusion
94(3)
References
95(2)
5 Two-XUV-Photon Processes: A Key Instrument in Attosecond Pulse Metrology and Time Domain Applications
97(24)
P. Tzallas
J. Kruse
E. Skantzakis
L.A.A. Nikolopoulos
G.D. Tsakiris
D. Charalambidis
5.1 Introduction
98(2)
5.2 Sources of Energetic Attosecond Pulses
100(3)
5.2.1 Pulse Energy Restricting Factors and Possible Solutions
100(1)
5.2.2 Intense Broadband Coherent XUV Continua
101(1)
5.2.3 On the CEP of Energetic 1fs to Sub-fs Scale Pulses
101(2)
5.3 Two-XUV-Photon Processes and Pulse Metrology
103(9)
5.3.1 Pulse Metrology Techniques
104(2)
5.3.2 Comparative Studies Between the Second Order IVAC and RABITT
106(6)
5.4 XUV-Pump-XUV-Probe Experiments at the 1-fs Scale
112(5)
5.4.1 The Two-XUV-Photon Double Ionization of Xenon Scheme
112(2)
5.4.2 The Second Order IVAC of the Continuum Radiation
114(1)
5.4.3 XUV-Pump-XUV-Probe of an Atomic Coherence
115(2)
5.5 Conclusions and Outlook
117(4)
References
118(3)
6 Controlling the Motion of Electronic Wavepackets Using Cycle-Sculpted Two-Color Laser Fields
121(24)
M. Kitzler
X. Xie
S. Roither
D. Kartashov
A. Baltuska
6.1 Introduction
121(2)
6.2 Experiment
123(3)
6.3 Measured Electron Momentum Spectra and Influence of the Coulomb Field
126(9)
6.3.1 Field-Driven Wavepacket Motion
126(2)
6.3.2 Influence of the Coulomb Field on the Spectral Mean Value
128(1)
6.3.3 Influence of the Coulomb Field on the Spectral Width
129(3)
6.3.4 Wavepacket Motion in the Lateral Direction
132(3)
6.4 Laser Subcycle Interference Structures
135(5)
6.4.1 Controlling Subcycle Interference Structures
135(3)
6.4.2 Retrieval of Wavepacket Dynamics from Interference Structures
138(2)
6.5 Conclusion
140(5)
References
141(4)
7 Characterization of Femtosecond Laser Filament-Induced Plasma and Its Application to Atmospheric Sensing
145(16)
HuaiLiang Xu
Ya Cheng
ZhiZhan Xu
See Leang Chin
7.1 Introduction
145(2)
7.2 Optical Emission Spectroscopy for Characterizing Filamentation-Induced Plasma
147(1)
7.3 Physical Properties of Filamentation Induced Plasma of Solid Targets
148(4)
7.4 Physical Properties of the Plasma Filament in Air
152(2)
7.5 Lasing Actions Occurring in the Plasma Filament in Air
154(2)
7.6 Application to Atmospheric Sensing
156(2)
7.7 Summary
158(3)
References
159(2)
8 Cascaded Laser Wakefield Acceleration Scheme for Monoenergetic High-Energy Electron Beam Generation
161(16)
Jiansheng Liu
Wentao Wang
Haiyang Lu
Changquan Xia
Mingwei Liu
Wang Cheng
Aihua Deng
Wentao Li
Hui Zhang
Jiancai Xu
Xiaoyan Liang
Yuxin Leng
Xiaoming Lu
Cheng Wang
Jianzhou Wang
Baifei Shen
Kazuhisa Nakajima
Ruxin Li
Zhizhan Xu
8.1 Introduction
162(1)
8.2 A Cascaded Laser Wakefield Accelerator Using Ionization-Induced Injection
163(6)
8.2.1 Experimental Setup
163(1)
8.2.2 Quasi-Monoenergetic e-Beam Generation from the Cascaded LWFA
164(3)
8.2.3 GeV-Class Quasi-Monoenergetic e-Beam Generation from the Cascaded LWFA with 3-mm-Thick Second Gas Cell
167(2)
8.3 Cascaded Laser Wakefield Acceleration of Electron Beams Beyond 1 GeV from an Ablative Capillary Discharge Waveguide
169(5)
8.3.1 Experimental Setup
169(1)
8.3.2 Optical Guiding for the Laser from an Ablative Capillary Discharge Waveguide
170(1)
8.3.3 Cascaded Laser Wakefield Acceleration of Electron Beams Beyond 1 GeV from an Ablative Capillary Discharge Waveguide
171(3)
8.4 Summary
174(3)
References
174(3)
9 Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications
177(20)
C. S. Liu
X. Shao
T. C. Liu
J. J. Su
M. Q. He
B. Eliasson
V. K. Tripathi
G. Dudnikova
R. Z. Sagdeev
S. Wilks
C. D. Chen
Z. M. Sheng
9.1 Introduction
178(2)
9.1.1 Brief Introduction on Particle Therapy for Cancer Treatment
179(1)
9.1.2 Schemes for Laser Proton Acceleration
179(1)
9.2 Quasi-Monoenergetic Proton Generation with RPA
180(7)
9.2.1 Criteria for RPA
180(1)
9.2.2 Underlying Theory of the RPA in One-Dimension
181(3)
9.2.3 Rayleigh-Taylor Instability-Induced Transparency and Particle Energy Spectrum Broadening
184(1)
9.2.4 Energy Scaling of RPA Generation of Quasi-Monoenergetic Protons
184(2)
9.2.5 Promising Experimental Evidence of the RPA of an Ultra-Thin Carbon Target
186(1)
9.3 Other Forms of RPA
187(3)
9.3.1 Multi-Ion Target Acceleration with RPA
187(1)
9.3.2 RPA of Gas Target
187(3)
9.4 Medical Implications of Quasi-Monoenergetic Proton Beam Generated from RPA: Laser-Proton Cancer Therapy with the RPA-Based Laser Proton Accelerator
190(3)
9.5 Summary
193(4)
References
194(3)
Index 197