Atjaunināt sīkdatņu piekrišanu

E-grāmata: Progress in Ultrafast Intense Laser Science XI

Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This eleventh volume covers a broad range of topics from this interdisciplinary research field, focusing on ultrafast dynamics of molecules in intense laser fields, pulse shaping techniques for controlling molecular processes, high-order harmonics generation and attosecond Photoionization, femtosecond laser induced filamentation and laser particle acceleration.
1 Hydrogen Migration in Intense Laser Fields: Analysis and Control in Concert
1(22)
Nicola Reusch
Nora Schirmel
Karl-Michael Weitzel
1.1 Introduction
1(2)
1.2 Experimental Approach
3(5)
1.3 Results
8(12)
1.3.1 Control by Linear Chirp
8(3)
1.3.2 Control by Quadratic Chirp
11(3)
1.3.3 Control by Other Means of Systematic Pulse Shaping
14(1)
1.3.4 Control by Genetic Algorithm
15(5)
1.4 Summary and Conclusions
20(3)
References
20(3)
2 Electron and Ion Coincidence Momentum Imaging of Multichannel Dissociative Ionization of Ethanol in Intense Laser Fields
23(20)
Ryuji Itakura
Kouichi Hosaka
Atsushi Yokoyama
Tomoya Ikuta
Fumihiko Kannari
Kaoru Yamanouchi
2.1 Introduction
23(2)
2.2 Photoelectron-Photoion Coincidence Momentum Imaging
25(3)
2.3 Channel-Specific Photoelectron Spectra
28(8)
2.3.1 Electronic Energy Levels of C2H5OH+ and Appearance Energies of Product Ions
28(1)
2.3.2 Near-Infrared Laser Fields
28(4)
2.3.3 Ultraviolet Laser Fields
32(4)
2.4 Correlation Between a Photoelectron and a Fragment Ion
36(3)
2.4.1 Energy Correlation Mapping
36(1)
2.4.2 Translational Temperature of Fragment Ions
37(2)
2.5 Summary
39(4)
References
40(3)
3 Exploring and Controlling Fragmentation of Polyatomic Molecules with Few-Cycle Laser Pulses
43(30)
Markus Kitzler
Xinhua Xie
Andrius Baltuska
3.1 Introduction
44(1)
3.2 Controlling Fragmentation Reactions with the Shape of Intense Few-Cycle Laser Pulses
45(8)
3.2.1 Experiment
46(3)
3.2.2 Dependence of Fragmentation Yield on CEP
49(1)
3.2.3 Discussion of the Underlying Control Mechanism
49(2)
3.2.4 Recollision Ionization from Lower-Valence Orbitals
51(1)
3.2.5 Experimental Test of the Recollision Ionization Mechanism
51(1)
3.2.6 Discussion and Outlook
52(1)
3.3 Controlling Fragmentation Reactions by Selective Ionization Into Dissociative Excited States
53(8)
3.3.1 Experiment
54(1)
3.3.2 Ionization Into Binding States
54(2)
3.3.3 Controlling Dissociation from the Cation
56(1)
3.3.4 Controlling Fragmentation Reactions from the Dication
56(2)
3.3.5 Selecting the Fragmentation Pathway
58(3)
3.3.6 Discussion and Outlook
61(1)
3.4 Exploring Many-Electron Ionization Dynamics in Polyatomic Molecules
61(7)
3.4.1 Experiment
62(1)
3.4.2 Proton Spectra: Dependence on Pulse Duration and Intensity
63(2)
3.4.3 Charge State Selected Proton Spectra and Reconstruction of the C-H Distance
65(2)
3.4.4 Dependence of Charge State on Pulse Duration
67(1)
3.4.5 Discussion and Outlook
67(1)
3.5 Summary
68(5)
References
69(4)
4 Optimal Pulse Shaping for Ultrafast Laser Interaction with Quantum Systems
73(22)
Hyosub Kim
Hangyeol Lee
Jongseok Lim
Jaewook Ahn
4.1 Introduction
73(1)
4.2 Types of Pulse Shaping
74(2)
4.3 Pulse Shaping Devices
76(2)
4.3.1 Spatial Light Modulator
77(1)
4.3.2 Acousto-Optic Programmable Dispersive Filter
78(1)
4.4 Spectral Amplitude Blocking
78(4)
4.4.1 A Ladder-Type System
78(2)
4.4.2 Spectral Amplitude Blocking in a V-Type System
80(2)
4.5 Spectral Chirp Control
82(7)
4.5.1 Chirps in a 2 + 1 Photon Transition
82(2)
4.5.2 Chirps in Two-Photon Transitions
84(2)
4.5.3 Optimal Pulse Shaping of a Two-Photon Transition
86(2)
4.5.4 Chirps in a V-Type System
88(1)
4.6 Spectral Phase Programming
89(3)
4.6.1 Spectral Phase Programming for a V-Type Transition
89(2)
4.6.2 Spectral Phase Programming for a Non-resonant Two-Photon Transition
91(1)
4.7 Conclusion
92(3)
References
93(2)
5 Photo-Electron Momentum Spectra In Strong Laser-Matter Interactions
95(24)
Armin Scrinzi
5.1 Introduction
95(3)
5.1.1 Size of the Computational Problem: The Infrared Curse
97(1)
5.2 The t-SURFF Method
98(9)
5.2.1 Single-Electron Systems
98(3)
5.2.2 Single-Ionization into Multiple Ionic Channels
101(3)
5.2.3 Double Ionization Spectra
104(3)
5.2.4 Computational Remarks
107(1)
5.3 Applications
107(7)
5.3.1 Spectra for a Short Range Potential
107(2)
5.3.2 Spectra for the Hydrogen Atom
109(1)
5.3.3 IR Photo-Electron Spectra at Elliptical Polarization
110(1)
5.3.4 Two-Electron System: 2 × 1-Dimensional Helium
110(3)
5.3.5 XUV Photo-Emission from He in Full Dimensionality
113(1)
5.4 Conclusions and Outlook
114(5)
References
115(4)
6 Laser Induced Electron Diffraction, LIED, in Circular Polarization Molecular Attosecond Photoionization, MAP
119(30)
Kai-Jun Yuan
Andre D. Bandrauk
6.1 Introduction
119(2)
6.2 Numerical Methods
121(3)
6.3 Diffraction in H2 and H2+
124(9)
6.3.1 MAPDs in H2 and by XUV Pulses
125(4)
6.3.2 Description of LIED in MPADs
129(4)
6.4 LIED in Asymmetric HHe2+
133(6)
6.4.1 MP AD in Asymmetric Molecules
135(2)
6.4.2 Interpretation of Asymmetric LIED
137(2)
6.5 Dependence of MATI Spectra on Laser Frequency
139(4)
6.5.1 MP AD in MATI with XUV Pulses
139(2)
6.5.2 Orientation Dependent Ionization Probability
141(2)
6.6 Conclusions
143(6)
References
145(4)
7 Coherent Electron Wave Packet, CEWP, Interference in Attosecond Photoionization with Ultrashort Circularly Polarized XUV Laser Pulses
149(26)
Kai-Jun Yuan
Andre D. Bandrauk
7.1 Introduction
150(2)
7.2 Numerical Methods
152(1)
7.3 Electron Interference in Attosecond Photoionization
153(5)
7.4 Electron Interference in Multiple Pathway Ionization
158(7)
7.4.1 Asymmetry of MPADs
159(3)
7.4.2 Description of Multiple Pathway CEWP Interference
162(1)
7.4.3 Influence of Pulse Intensity on the Asymmetry of MPADs
163(2)
7.5 Conclusions
165(10)
References
172(3)
8 Phase Evolution and THz Emission from a Femtosecond Laser Filament in Air
175(20)
Peng Liu
Ruxin Li
Zhizhan Xu
8.1 Introduction
176(1)
8.2 Generation of CEP Stabilized IR Few-Cycle Laser Pulses
177(3)
8.2.1 Optical Parametric Amplifier
177(2)
8.2.2 Pulse Compression
179(1)
8.2.3 Carrier Envelope Phase Stability
180(1)
8.3 Waveform Controlled THz Emission from Air Plasma Driven by Few-Cycle Pulses
180(6)
8.3.1 Variation of THz Waveform in Air Plasma
181(1)
8.3.2 Simulation of THz Emission in Air Plasma by Few-Cycle Pulses
182(2)
8.3.3 Variation of CEP and Phase of Few-Cycle Pulses in Filament
184(2)
8.4 Initial CEP and Its Determination Through THz Waveform Variation
186(5)
8.4.1 Initial CEP
186(2)
8.4.2 Determination of the Initial CEP
188(1)
8.4.3 Experimental Verification
189(2)
8.5 Summary
191(4)
References
192(3)
9 Interaction of Femtosecond-Laser-Induced Filament Plasma with External Electric Field for the Application to Electric Field Measurement
195(20)
Takashi Fujii
Kiyohiro Sugiyama
Alexei Zhidkov
Megumu Miki
Eiki Hotta
Koshichi Nemoto
9.1 Introduction
196(1)
9.2 Filamentation Induced by High-Intensity Femtosecond Laser Pulses and Its Interaction with External Electric Field
197(1)
9.3 Remote Measurement of Electric Field Using Filament Plasma
198(11)
9.3.1 Theory
198(2)
9.3.2 Experimental Setup
200(2)
9.3.3 Experimental Results
202(7)
9.4 Summary
209(6)
References
211(4)
10 Development of an Apparatus for Characterization of Cluster-Gas Targets for Laser-Driven Particle Accelerations
215(20)
Satoshi Jinno
Yuji Fukuda
Hironao Sakaki
Akifumi Yogo
Masato Kanasaki
Kiminori Kondo
Anatoly Ya. Faenov
Igor Yu. Skobelev
Tatiana A. Pikuz
Alexy S. Boldarev
Vladimir A. Gasilov
10.1 Introduction
216(1)
10.2 Experiments and Analysis for Characterization of the Cluster-Gas Target
217(4)
10.2.1 Angular Distribution of Scattered light
217(2)
10.2.2 Derivation of Cluster Size Distribution
219(1)
10.2.3 Spatial Distribution of Clusters
219(1)
10.2.4 Total Gas Density Profile
220(1)
10.3 Results
221(9)
10.3.1 Size Measurement of Standard Particles
221(1)
10.3.2 Measurement of the Gas Jet Pressure
222(3)
10.3.3 Characterization of H2 (70 %) + CO2 (30 %) Mixed-Gas Target
225(1)
10.3.4 Cluster Density for H2 (70 %) + CO2 (30 %)
226(1)
10.3.5 Total Gas Density Profile
227(1)
10.3.6 Cluster Mass Fraction
227(1)
10.3.7 Size Measurement of CO2 Clusters in Helium (90 %) + C02 (10 %) Mixed-Gas Target
228(2)
10.4 Discussion
230(1)
10.4.1 Comparison with the Boldarev's Model
230(1)
10.5 Summary
231(4)
References
232(3)
Index 235