Atjaunināt sīkdatņu piekrišanu

Proof That Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black-Scholes Partial Differential Equations [Mīkstie vāki]

  • Formāts: Paperback / softback, 93 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 07-Apr-2023
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147045632X
  • ISBN-13: 9781470456320
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 93 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 07-Apr-2023
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147045632X
  • ISBN-13: 9781470456320
Citas grāmatas par šo tēmu:
"Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximations of partial differential equations (PDEs). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, indicate that ANNs seem to admit the fundamental power to overcome the curse of dimensionality when approximating the high-dimensional functions appearing in the above named computational problems. There are a series of rigorous mathematical approximation results for ANNs in thescientific literature. Some of them prove convergence without convergence rates and some of these mathematical results even rigorously establish convergence rates but there are only a few special cases where mathematical results can rigorously explain the empirical success of ANNs when approximating high-dimensional functions. The key contribution of this article is to disclose that ANNs can efficiently approximate high-dimensional functions in the case of numerical approximations of Black-Scholes PDEs. More precisely, this work reveals that the number of required parameters of an ANN to approximate the solution of the Black-Scholes PDE grows at most polynomially in both the reciprocal of the prescribed approximation accuracy [ error term] [ greater than] 0 and the PDE dimension d [ element of] N. We thereby prove, for the first time, that ANNs do indeed overcome the curse of dimensionality in the numerical approximation of Black-Scholes PDEs"--
Philipp Grohs, University of Vienna, Austria, and Austrian Academy of Sciences, Linz, Austria.

Fabian Hornung, Karlsruhe Institute of Technology, Germany, and ETH Zurich, Switzerland.

Arnulf Jentzen, The Chinese University of Hong Kong, Shenzhen, China, University of Munster, Germany, and ETH Zurich, Switzerland.

Philippe von Wurstemberger, ETH Zurich, Switzerland, and The Chinese University of Hong Kong, Shenzhen, China.