Atjaunināt sīkdatņu piekrišanu

E-grāmata: Protecting Location Privacy in the Era of Big Data: A Technical Perspective

, (Macquarie University),
  • Formāts: 136 pages
  • Izdošanas datums: 10-Dec-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040226223
  • Formāts - EPUB+DRM
  • Cena: 75,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 136 pages
  • Izdošanas datums: 10-Dec-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040226223

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book examines the uses and potential risks of location-based services (LBS) in the context of big data, with a focus on location privacy protection methods.

The growth of the mobile Internet and the popularity of smart devices have spurred the development of LBS and related mobile applications. However, the misuse of sensitive location data could compromise the physical and communication security of associated devices and nodes, potentially leading to privacy breaches. This book explores the potential risks to the location privacy of mobile users in the context of big data applications. It discusses the latest methods and implications of location privacy from different perspectives. The author offers case studies of three applications: statistical disclosure and privacy protection of location-based big data using a centralised differential privacy model; a user location perturbation mechanism based on a localised differential privacy model; and terminal location perturbation using a geo-indistinguishability model. Linking recent developments in three-dimensional positioning and artificial intelligence, the book also predicts future trends and provides insights into research issues in location privacy.

This title will be a valuable resource for researchers, students, and professionals interested in location-based services, privacy computing and protection, wireless network security, and big data security.



This book examines the uses and potential risks of location-based services (LBS) in the context of big data, with a focus on location privacy protection methods.

1. Introduction
2. Location-based Services and Location Privacy Protection
3. Dynamic Statistical Publishing and Privacy Protection of Location-based Big Data via Adaptive Sampling and Grid Clustering
4. Localized Location Privacy Protection based on Optimized Random Response
5. Achieving Location Privacy Protection via Geo-indistinguishability and Location Semantics
6. Conclusion

Yan Yan is a Professor of the School of Computer and Communication, Lanzhou University of Technology, China. Her research interests include, but are not limited to, privacy preserving data collection, privacy preserving data publishing, blockchain transaction privacy protection, and multimedia information security.

Adnan Mahmood is a Lecturer in ComputingIoT and Networking at the School of Computing, Macquarie University, Sydney, Australia. His research interests include, but are not limited to, the Internet of Things (primarily, the Internet of Vehicles), Trust Management, Software-Defined Networking, and the Next Generation Heterogeneous Wireless Networks.

Quan Z. Sheng is a Distinguished Professor and Head of School of Computing at Macquarie University, Australia. He is ranked by Microsoft Academic as one of the Most Impactful Authors in Services Computing (ranked Top 5 of All Time worldwide) and in the Web of Things (ranked Top 20 All Time).