Atjaunināt sīkdatņu piekrišanu

E-grāmata: Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives

Edited by (Motilal Nehru National Institute of Tech), Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Apr-2020
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781119551645
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 224,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Apr-2020
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781119551645
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A guide to the chemical agents that protect plants from various environmental stressors

Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses.

Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book:

  • Explores the efficacy of various chemical agents to eliminate abiotic stress
  • Offers a groundbreaking look at the topic and reviews the most recent advances in the field
  • Includes information from noted authorities on the subject
  • Promises to benefit agriculture under stress conditions at the ground level

Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.

List of Contributors xix
1 Role of Proline and Glycine Betaine in Overcoming Abiotic Stresses 1(23)
Murat Dikilitas
Eray Simsek
Atyadeep Roychoudhury
1.1 Introduction
1(1)
1.2 Responses of Crop Plants Under Abiotic Stresses
2(1)
1.3 Mechanisms of Osmoprotectant Functions in Overcoming Stress
3(4)
1.3.1 Proline Biosynthesis and Mechanism of Action in Plants
4(3)
1.3.2 Glycine Betaine (GB) Biosynthesis and Mechanism of Action in Plants
7(1)
1.4 Application of Osmoprotectants in Stress Conditions
7(7)
1.4.1 Application of Proline
7(3)
1.4.2 Application of GB
10(1)
1.4.3 Transgenic Approaches
11(1)
1.4.4 Negative Effects of Proline Application
12(2)
1.5 Conclusion and Future Perspectives
14(1)
Acknowledgment
14(1)
References
15(9)
2 Glycine Betaine and Crop Abiotic Stress Tolerance: An Update 24(29)
Giridara-Kumar Surabhi
Arpita Rout
2.1 Introduction
24(1)
2.2 Biosynthesis of GB
25(1)
2.3 Accumulation of GB Under Abiotic Stress in Crop Plants
26(1)
2.4 Exogenous Application of GB in Crop Plants Under Abiotic Stress
27(6)
2.4.1 Drought
27(1)
2.4.2 Salt Stress
28(1)
2.4.3 Temperature Stress
29(1)
2.4.4 Heavy Metal Stress
29(4)
2.5 Transgenic Approach to Enhance GB Accumulation in Crop Plants Under Abiotic Stress
33(2)
2.5.1 Drought
34(1)
2.5.2 Salt Stress
34(1)
2.5.3 Temperature Stress
35(1)
2.6 Effect of GB on Reproductive Stage in Different Crops
35(6)
2.6.1 Role of GB on Flower Initiation
35(6)
2.6.2 GB on Seed Set and Yield Stability
41(1)
2.7 Pyramiding GB Synthesizing Genes for Enhancing Abiotic Stress Tolerance in Plants
41(2)
2.8 Conclusion and Future Prospective
43(1)
Acknowledgment
43(1)
Reference
44(9)
3 Osmoprotective Role of Sugar in Mitigating Abiotic Stress in Plants 53(18)
Farhan Ahmad
Ananya Singh
Aisha Kamal
3.1 Introduction
53(1)
3.2 Involvement of Sugar in Plant Developmental Process
54(1)
3.3 Multidimensional Role of Sugar Under Optimal and Stressed Conditions
55(7)
3.3.1 Sugar as Sensing and Signaling Molecules
55(1)
3.3.2 Sucrose and Trehalose Sensing
56(1)
3.3.3 Sugar Alcohol (Polyol) Sensing
57(1)
3.3.4 Sugar and Redox Homeostasis
57(1)
3.3.5 Sugars as Osmoprotectants
58(1)
3.3.6 Sugars and Abiotic Stress Tolerance in Plants
59(3)
3.3.6.1 Salinity Stress
59(1)
3.3.6.2 Drought Stress
59(2)
3.3.6.3 Heat/Cold Stress
61(1)
3.3.6.4 Mineral Nutrient Deficiency
61(1)
3.3.7 Limitations and Future Prospects
62(1)
References
62(9)
4 Sugars and Sugar Polyols in Overcoming Environmental Stresses 71(31)
Saswati Bhattacharya
Anirban Kundu
4.1 Introduction
71(1)
4.2 Types of Sugars and Sugar Alcohols
72(5)
4.2.1 Trehalose
72(1)
4.2.2 Sucrose
73(1)
4.2.3 Fructans
74(1)
4.2.4 Raffinose Family Oligosaccharides (RFOs)
75(1)
4.2.5 Sugar Alcohols
75(2)
4.2.5.1 Mannitol
75(1)
4.2.5.2 Sorbitol
76(1)
4.2.5.3 Inositols
77(1)
4.3 Mechanism of Action of Sugars and Polyols
77(5)
4.3.1 As Osmolytes
77(2)
4.3.2 As Antioxidants
79(1)
4.3.3 As Signaling Molecule
80(2)
4.4 Involvement of Sugars and Polyols in Abiotic Stress Tolerance
82(5)
4.4.1 Cold Acclimation
82(1)
4.4.2 Tolerance to Drought
83(1)
4.4.3 Salinity Tolerance
84(2)
4.4.4 High Temperature Tolerance
86(1)
4.5 Engineering Abiotic Stress Tolerance Using Sugars and Sugar Alcohols
87(4)
4.5.1 Trehalose
87(2)
4.5.2 Fructans
89(1)
4.5.3 RFOs
90(1)
4.5.4 Mannitol
90(1)
4.5.5 Sorbitol
90(1)
4.5.6 Inositol and Its Derivatives
91(1)
4.6 Conclusions and Future Perspectives
91(1)
References
92(10)
5 Ascorbate and Tocopherols in Mitigating Oxidative Stress 102(20)
Kingsuk Das
5.1 Introduction
102(1)
5.2 Role of Ascorbic Acid in Plant Physiological Processes
103(1)
5.2.1 Ascorbic Acid-Its Role as Alleviator in Abiotic Stresses
104(1)
5.3 Transgenic Approaches for Overproduction of Ascorbate Content for Fight Against Abiotic Stress
104(9)
5.3.1 Ascorbic Acid-Alleviates Temperature Stress
105(2)
5.3.2 Ascorbic Acid-It Confers Photoprotection
107(1)
5.3.3 Ascorbic Acid Can Mitigate Ozone Stress
107(1)
5.3.4 Ascorbic Acid-Fights Against Foliar Injury
108(1)
5.3.5 Tocopherol-Its Occurrence in Plants
108(1)
5.3.6 Tocopherol-Acts as Effective Nonenzymatic Antioxidant
109(1)
5.3.7 Tocopherol and Its Correlation with Other Plant Hormones
109(2)
5.3.8 Tocopherol Content Under Stressed Condition
111(1)
5.3.9 Experiments with Tocopherol-deficient Mutants
111(1)
5.3.10 The Tocopherol-Ascorbate-Glutathione Triad-Capable to Scavenge ROS in Conjugated Manner
111(1)
5.3.11 Tocopherol-Alleviator in Salt Stress
112(1)
5.4 Conclusion
113(1)
References
114(8)
6 Role of Glutathione Application in Overcoming Environmental Stress 122(25)
Nimisha Amist
N.B. Singh
6.1 Introduction
122(1)
6.2 Glutathione Molecular Structure
123(1)
6.3 Glutathione Biosynthesis and Distribution
124(3)
6.3.1 Regulation of Glutathione Biosynthesis
124(2)
6.3.2 Glutathione Distribution and Abundance in Plant Cells
126(1)
6.4 Glutathione-induced Oxidative Stress Tolerance
127(2)
6.5 Impact of Abiotic Stress on Glutathione Content in Various Plants
129(2)
6.5.1 Glutathione Content Under Heavy Metal Stress
129(1)
6.5.2 Glutathione Content of Plants Treated with Herbicides
129(1)
6.5.3 Glutathione Content Under Drought
130(1)
6.5.4 Glutathione Content and Heat Stress
130(1)
6.5.5 Glutathione Content Under Salinity
130(1)
6.6 Exogenous Application of GSH in Plants
131(1)
6.7 Cross Talk on Glutathione Signaling Under Abiotic Stress
131(6)
6.8 Conclusion
137(1)
References
137(10)
7 Modulation of Abiotic Stress Tolerance Through Hydrogen Peroxide 147(27)
Murat Dikilitas
Eray Simsek
Aryadeep Roychoudhury
7.1 Introduction
147(2)
7.2 Abiotic Stress in Crop Plants
149(1)
7.3 Mechanisms of Hydrogen Peroxide in Cells
149(5)
7.4 Role of Hydrogen Peroxide in Overcoming Stress
154(9)
7.5 Conclusion and Future Perspectives
163(1)
Acknowledgment
163(1)
References
163(11)
8 Exogenous Nitric Oxide- and Hydrogen Sulfide-induced Abiotic Stress Tolerance in Plants 174(40)
Mirza Hasanuzzaman
M.H.M. Borhannuddin Bhuyan
Kamrun Nahar
Sayed Mohammad Mohsin
Jubayer Al Mahmud
Khursheda Parvin
Masayuki Fujita
8.1 Introduction
174(1)
8.2 Nitric Oxide Biosynthesis in Plants
175(2)
8.3 Hydrogen Sulfide Biosynthesis in Plants
177(1)
8.4 Application Methods of NO and H2S Donors in Plants
178(1)
8.5 Exogenous NO-induced Abiotic Stress Tolerance
178(24)
8.5.1 Exogenous NO-induced Salt Stress Tolerance
178(11)
8.5.2 Exogenous NO-induced Drought Tolerance
189(1)
8.5.3 Exogenous NO-induced Metal/Metalloid Toxicity Tolerance
190(1)
8.5.4 Exogenous NO-induced Extreme Temperatures Stress Tolerance
191(1)
8.5.5 Exogenous NO-induced Flooding Stress Tolerance
192(1)
8.5.6 Exogenous NO-induced Atmospheric Pollutant-mediated Tolerance
192(1)
8.5.6.1 Ozone
192(1)
8.5.6.2 Herbicides
192(1)
8.5.7 Exogenous NO-induced UV Radiation Tolerance
193(1)
8.5.8 Exogenous NO-induced Light Stress Tolerance
194(1)
8.5.8.1 High Light
194(1)
8.5.8.2 Low Light
194(1)
8.5.9 Exogenous H2S-induced Abiotic Stress Tolerance
195(1)
8.5.10 Exogenous H2S-induced Salt Stress Tolerance
195(4)
8.5.11 Exogenous H2S-induced Drought and Hyperosmotic Stress Tolerance
199(1)
8.5.12 Exogenous H2S-induced Metal/Metalloid Stress Tolerance
200(1)
8.5.13 Exogenous H2S-induced Heat Stress Tolerance
200(1)
8.5.14 Exogenous H2S-induced Cold Stress Tolerance
201(1)
8.5.15 Exogenous H2S-induced Flood Stress Tolerance
201(1)
8.5.16 Interaction of NO/H2S with ROS and Antioxidant Defense Systems
202(1)
8.6 Conclusions and Outlook
202(1)
References
203(11)
9 Role of Nitric Oxide in Overcoming Heavy Metal Stress 214(24)
Pradyumna Kumar Singh
Madhu Tiwari
Maria Kidwai
Dipali Srivastava
Rudra Deo Tripathi
Debasis Chakrabarty
9.1 Introduction
214(2)
9.2 Nitric Oxide and Osmolyte Synthesis During Heavy Metal Stress
216(1)
9.3 Relation of Nitric Oxide and Secondary Metabolite Modulation in Heavy Metal Stress
217(1)
9.4 Regulation of Redox Regulatory Mechanism by Nitric Oxide
218(4)
9.4.1 Nitric Oxide-Mediated ROS Regulation During Heavy Metal Stress
219(1)
9.4.2 Nitric Oxide Regulation of Antioxidant Enzyme Activity and Heavy Metal Detoxification
220(2)
9.5 Nitric Oxide and Hormonal Cross Talk During Heavy Metal Stress
222(5)
9.6 Conclusion
227(1)
References
227(11)
10 Protective Role of Sodium Nitroprusside in Overcoming Diverse Environmental Stresses in Plants 238(16)
Satabdi Ghosh
10.1 Introduction
238(1)
10.2 Role of SNP in Alleviating Abiotic Stress
239(6)
10.2.1 Sodium Nitroprusside Ameliorates Polyethylene Glycol-induced Osmotic Stress
239(1)
10.2.2 Sodium Nitroprusside Ameliorates Nanosilver (AgNP) and Silver Nitrate (AgNO3) Stresses
239(1)
10.2.3 Sodium Nitroprusside Ameliorates Salt Stress
240(1)
10.2.4 Sodium Nitroprusside Ameliorates NaHCO3 Stress
240(1)
10.2.5 Sodium Nitroprusside Ameliorates Arsenic-induced Oxidative Stress
241(1)
10.2.6 Sodium Nitroprusside Ameliorates Heat Stress
241(1)
10.2.7 Sodium Nitroprusside Ameliorates Ultraviolet-B Radiation
242(1)
10.2.8 Sodium Nitroprusside Ameliorates Water Stress
242(1)
10.2.9 Sodium Nitroprusside Ameliorates Metal Toxicity
243(1)
10.2.9.1 Aluminum Toxicity
243(1)
10.2.9.2 Cadmium Toxicity
243(1)
10.2.9.3 Copper Toxicity
244(1)
10.2.9.4 Lead Toxicity
244(1)
10.2.10 Sodium Nitroprusside Ameliorates Chilling Stress
244(1)
10.3 Conclusion and Future Prospect
245(1)
Acknowledgments
245(1)
References
245(9)
11 Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress 254(26)
Deepesh Bhatt
Manoj Nath
Mayank Sharma
Megha D. Bhatt
Deepak Singh Bisht
Naresh V. Butani
11.1 Introduction
254(2)
11.2 Function of Classical Plant Hormones in Stress Mitigation
256(4)
11.2.1 Auxins
256(1)
11.2.2 Cytokinins
257(1)
11.2.3 Gibberellins
258(1)
11.2.4 Ethylene
259(1)
11.3 Role of Specialized Stress-responsive Hormones
260(5)
11.3.1 Abscisic Acid
260(1)
11.3.2 Brassinosteroids
261(1)
11.3.3 Jasmonic Acid
262(1)
11.3.4 Salicylic Acid
263(1)
11.3.5 Strigolactones
264(1)
11.4 Hormone Cross Talk and Stress Alleviation
265(3)
11.4.1 ABA-mediated Signaling with Auxin and Cytokinin
266(1)
11.4.2 ABA-mediated Signaling with GA and MeJA
267(1)
11.4.3 ABA-mediated Signaling with Strigolactone
267(1)
11.4.4 ABA-mediated Signaling with Brassinosteroids
268(1)
11.5 Conclusions and Future Perspective
268(1)
References
268(12)
12 Abscisic Acid Application and Abiotic Stress Amelioration 280(11)
Nasreena Sajjad
Eijaz Ahmed Bhat
Durdana Shah
Abubakar Wani
Nazish Nazir
Rohaya Ali
Sumaya Hassan
12.1 Introduction
280(1)
12.2 Abscisic Acid Biosynthesis
281(1)
12.3 Role of Abscisic Acid in Plant Stress Tolerance
282(1)
12.4 Regulation of ABA Biosynthesis Through Abiotic Stress
282(1)
12.5 ABA and Abiotic Stress Signaling
283(1)
12.6 Drought Stress
284(1)
12.7 UV-B Stress
284(1)
12.8 Water Stress
285(1)
12.9 ABA and Transcription Factors in Stress Tolerance
285(1)
12.10 Conclusion
286(1)
References
286(5)
13 Role of Polyamines in Mitigating Abiotic Stress 291(15)
Rohaya Ali
Sumaya Hassan
Durdana Shah
Nasreena Sajjad
Eijaz Ahmed Bhat
13.1 Introduction
291(2)
13.2 Distribution and Function of Polyamines
293(1)
13.3 Synthesis, Catabolism, and Role of Polyamines
293(2)
13.4 Polyamines and Abiotic Stress
295(4)
13.5 Conclusion
299(1)
References
300(6)
14 Rote of Melatonin in Amelioration of Abiotic Stress-induced Damages 306(12)
Nasreena Sajjad
Eijaz Ahmed Bhat
Sumaya Hassan
Rohaya Ali
Durdana Shah
14.1 Introduction
306(1)
14.2 Melatonin Biosynthesis in Plants
306(1)
14.3 Modulation of Melatonin Levels in Plants Under Stress Conditions
307(2)
14.4 Role of Melatonin in Amelioration of Stress-induced Damages
309(2)
14.5 Mechanisms of Melatonin-mediated Stress Tolerance
311(2)
14.6 Conclusion
313(1)
References
313(5)
15 Brassinosteroids in Lowering Abiotic Stress-mediated Damages 318(9)
Gunjan Sirohi
Meenu Kapoor
15.1 Introduction
318(1)
15.2 BR-induced Stress Tolerance in Plants
319(4)
15.3 Conclusions and Future Perspectives
323(1)
References
323(4)
16 Strigolactones in Overcoming Environmental Stresses 327(15)
Megha D. Bhatt
Deepesh Bhatt
16.1 Introduction
327(4)
16.1.1 Importance of Strigolactones
328(1)
16.1.2 Strigolactone Biosynthesis
328(3)
16.2 Various Roles of SLs in Plants
331(4)
16.2.1 In Mitigating Drought and Salinity Stresses
332(1)
16.2.2 In Harmonizing Reactive Oxygen Species
333(1)
16.2.3 In Seed Germination Under High Temperature
333(1)
16.2.4 In Karrikin-induced Signaling and Photomorphogenesis
333(1)
16.2.5 In Augmenting Plant Defense Under Biotic Stress
334(1)
16.3 Cross Talk Between Other Phytohormones and SLs
335(1)
16.4 Conclusion
336(1)
References
336(6)
17 Emerging Roles of Salicylic Acid and Jasmonates in Plant Abiotic Stress Responses 342(32)
Parankusam Santisree
Lakshmi Chandra Lekha Jalli
Pooja Bhatnagar-Mathur
Kiran K. Sharma
17.1 Introduction
342(1)
17.2 Salicylic Acid
343(1)
17.3 Biosynthesis and Metabolism of SA
343(3)
17.4 SA in Abiotic Stress Tolerance
346(5)
17.4.1 SA and Drought
346(1)
17.4.2 SA and Temperature Stress
347(1)
17.4.3 SA and Salinity Stress
348(1)
17.4.4 SA and Heavy Metals Stress
349(1)
17.4.5 SA and UV-radiation
350(1)
17.4.6 SA and O3 Stress
351(1)
17.5 Signaling of SA Under Abiotic Stress
351(1)
17.6 Jasmonic Acid
352(1)
17.7 Physiological Function of Jasmonates
353(1)
17.8 Biosynthesis of Jasmonic Acid
354(1)
17.9 JA Signaling in Plants
355(1)
17.10 JA and Abiotic Stress
356(1)
17.11 Role of Jasmonates in Temperature Stress
357(1)
17.12 Metal Stress and Role of Jasmonates
358(1)
17.13 Jasmonates and Salt Stress
359(1)
17.14 Jasmonates and Water Stress
360(1)
17.15 Cross Talk Between JA and SA Under Abiotic Stress
361(1)
17.16 Concluding Remarks
362(1)
Acknowledgments
363(1)
References
363(11)
18 Multifaceted Roles of Salicylic Acid and Jasmonic Acid in Plants Against Abiotic Stresses 374(15)
Nilanjan Chakraborty
Anik Sarkar
Krishnendu Acharya
18.1 Introduction
374(1)
18.2 Biosynthesis of SA and JA
374(3)
18.3 Exogenous Application of SA and JA in Abiotic Stress Responses
377(1)
18.4 Future Goal and Concluding Remarks
378(5)
References
383(6)
19 Brassinosteroids and Salicylic Acid as Chemical Agents to Ameliorate Diverse Environmental Stresses in Plants 389(24)
B. Vidya Vardhini
19.1 Introduction
389(1)
19.2 Overview of PGRs
389(1)
19.2.1 Overview of Brassinosteroids
390(1)
19.2.2 Overview of Salicylic Acid
390(1)
19.3 BRs and SA in Ameliorating Abiotic Stresses
390(10)
19.3.1 BRs and SA in Ameliorating Heavy Metal Stresses
391(3)
19.3.2 BRs and SA in Ameliorating High Temperature Stress
394(1)
19.3.3 BRs and SA in Ameliorating Low Temperature Stress
395(1)
19.3.4 BRs and SA in Ameliorating Water Stress
396(1)
19.3.5 BRs and SA in Ameliorating Salinity Stress
397(3)
19.3.6 BRs and SA in Ameliorating Radiation Stress
400(1)
19.4 Conclusion
400(1)
References
400(13)
20 Role of γ-Aminobutyric Acid in the Mitigation of Abiotic Stress in Plants 413(11)
Ankur Singh
Aiyadeep Roychoudhury
20.1 Introduction
413(1)
20.2 GABA Metabolism
414(1)
20.3 Protective Role of GABA Under Different Stresses
415(4)
20.3.1 Heat Stress
415(1)
20.3.2 Drought Stress
416(1)
20.3.3 Hypoxia
417(1)
20.3.4 Salinity Stress
418(1)
20.3.5 Arsenic Pollution
418(1)
20.4 Conclusion and Future Perspective
419(1)
Acknowledgments
419(1)
Reference
420(4)
21 Isoprenoids in Plant Protection Against Abiotic Stress 424(13)
Syed Uzma Jalil
Mohammad Israil Ansari
21.1 Introduction
424(2)
21.2 Synthesis of Free Radicals During Abiotic Stress Conditions
426(1)
21.3 Biosynthesis of Isoprenoids in Plants
427(1)
21.4 Functions and Mechanisms of Isoprenoids During Abiotic Stresses
428(2)
21.4.1 Stabilization of Membrane and Structure
428(1)
21.4.2 Regulation of ROS
429(1)
21.4.3 Modifications of ROS Signaling Promote Defensive Effects Against Abiotic Stress
430(1)
21.5 Conclusion
430(1)
Acknowledgments
431(1)
References
431(6)
22 Involvement of Sulfur in the Regulation of Abiotic Stress Tolerance in Plants 437(30)
Santanu Samanta
Ankur Singh
Aryadeep Roychoudhuiy
22.1 Introduction
437(1)
22.2 Sulfur Metabolism
438(1)
22.3 Sulfur Compounds Having Potential to Ameliorate Abiotic Stress
438(3)
22.3.1 Cysteine
439(1)
22.3.2 Glutathione
440(1)
22.3.3 Thioredoxin Systems
440(1)
22.3.4 Vitamins
441(1)
22.3.5 Other Compounds
441(1)
22.4 Role of Sulfur Compounds During Salinity Stress
441(2)
22.5 Role of Sulfur Compounds During Drought Stress
443(1)
22.6 Role of Sulfur Compounds During Temperature Stress
444(2)
22.7 Role of Sulfur Compounds During Light Stress
446(1)
22.8 Role of Sulfur Compounds in Heavy Metal Stress
447(5)
22.8.1 Toxic Effects of Heavy Metals in Plants
447(3)
22.8.2 Sulfur Metabolites in Heavy Metal Tolerance
450(2)
22.9 Conclusion and Future Perspectives
452(1)
Acknowledgments
452(1)
References
453(14)
23 Role of Thiourea in Mitigating Different Environmental Stresses in Plants 467(16)
Vikas Yadav Patade
Ganesh C. Nikalje
Sudhakar Srivastava
23.1 Introduction
467(1)
23.2 Modes of TU Application
468(1)
23.2.1 Seed Pretreatment
468(1)
23.2.2 Medium Supplementation
468(1)
23.2.3 Foliar Spray
469(1)
23.3 Biological Roles of TU Under Normal Conditions
469(1)
23.4 Role of Exogenous Application of TU in Mitigation of Environmental Stresses
470(4)
23.4.1 Salinity Stress
470(2)
23.4.2 Heavy Metal Stress
472(1)
23.4.3 Drought Stress
472(1)
23.4.4 Heat Stress
473(1)
23.4.5 UV Stress
473(1)
23.5 Mechanisms of TU-mediated Enhanced Stress Tolerance
474(2)
23.6 Success Stories of TU Application at Field Level
476(1)
23.7 Conclusion
477(1)
References
478(5)
24 Oxylipins and Strobilurins as Protective Chemical Agents to Generate Abiotic Stress Tolerance in Plants 483(8)
Aditya Banerjee
Aryadeep Roychoudhury
24.1 Introduction
483(1)
24.2 Signaling Mediated by Oxylipins
484(1)
24.3 Roles of Oxylipins in Abiotic Stress Tolerance
484(2)
24.3.1 Oxylipins Regulating Osmotic Stress Tolerance
484(1)
24.3.2 Oxylipins Regulating Temperature Stress Tolerance
485(1)
24.3.3 Oxylipins Regulating Light Stress
485(1)
24.4 Role of Strobilurins in Abiotic Stress Tolerance
486(1)
24.5 Conclusion
487(1)
24.6 Future Perspectives
487(1)
Acknowledgments
487(1)
References
487(4)
25 Role of Triacontanol in Overcoming Environmental Stresses 491(19)
Abbu Zaid
Mohd. Asgher
Ishfaq Ahmad Wani
Shabir H. Wani
25.1 Introduction
491(2)
25.2 Environmental Stresses and Tria as a Principal Stress-Alleviating Component in Diverse Crop Plants
493(4)
25.2.1 Metal/Metalloid Stress
493(1)
25.2.2 Salinity Stress
494(2)
25.2.3 Drought Stress
496(1)
25.2.4 Transplantation Shock
496(1)
25.3 Assessment of Foliar and Seed Priming Tria Application in Regulating Diverse Physio-biochemical Traits in Plants
497(2)
25.4 Conclusion and Future Prospects
499(3)
Acknowledgments
502(1)
References
502(8)
26 Penconazole, Paclobutrazol, and Triacontanol in Overcoming Environmental Stress in Plants 510(25)
Saket Chandra
Aryadeep Roychoudhuty
26.1 Introduction
510(2)
26.2 Nature of Damages by Different Abiotic Stresses
512(3)
26.2.1 Salt Stress
512(1)
26.2.2 Heat Stress
513(1)
26.2.3 Drought Stress
513(1)
26.2.4 Chilling Stress
514(1)
26.2.5 Flooding Stress
514(1)
26.2.6 Freezing Stress
515(1)
26.3 Synthesis of Chemicals
515(1)
26.3.1 Penconazole Synthesis
515(1)
26.3.2 Paclobutrazol Synthesis
516(1)
26.3.3 Triacontanol Synthesis
516(1)
26.4 Role of Exogenously Added Penconazole, Paclobutrazol, and Triacontanol During Stress
516(7)
26.4.1 Penconazole
517(1)
26.4.1.1 Drought Stress
517(1)
26.4.1.2 Salt Stress
518(1)
26.4.1.3 Other Stresses
518(1)
26.4.2 Paclobutrazol
518(3)
26.4.2.1 Morphological Effect
519(1)
26.4.2.2 Yield
519(1)
26.4.2.3 Physiological Response
520(1)
26.4.3 Triacontanol
521(21)
26.4.3.1 Plant Growth
521(1)
26.4.3.2 Physiological and Biochemical Aspects of Plants
521(1)
26.4.3.3 Quality and Production of Crops
522(1)
26.4.3.4 Active Constituents of Plants
522(1)
26.4.3.5 Abiotic Stress Management
522(1)
26.5 Conclusion
523(1)
Acknowledgment
524(1)
References
524(11)
27 Role of Calcium and Potassium in Amelioration of Environmental Stress in Plants 535(28)
Jainendra Pathak
Haseen Ahmed
Neha Kumari
Abha Pandey
Rajneesh
Rajeshwar P. Sinha
27.1 Introduction
535(2)
27.2 Biological Functions of Calcium and Potassium in Plants
537(1)
27.3 Calcium and Potassium Uptake, Transport, and Assimilation in Plants
538(2)
27.4 Calcium- and Potassium-induced Abiotic Stress Signaling
540(2)
27.5 Role of Calcium and Potassium in Abiotic Stress Tolerance
542(8)
27.5.1 Drought Conditions
542(3)
27.5.2 Salinity Stress
545(1)
27.5.3 Extreme Temperature (Heat) Stress
546(2)
27.5.4 Low Temperature (Cold) Stress
548(1)
27.5.5 Heavy Metal Stress
549(1)
27.6 Waterlogging Conditions
550(1)
27.7 High Light Intensity
550(1)
27.8 Conclusion
551(1)
Acknowledgments
551(1)
References
552(11)
28 Role of Nitric Oxide and Calcium Signaling in Abiotic Stress Tolerance in Plants 563(19)
Zaffar Malik
Sobia Afzal
Muhammad Danish
Ghulam Hassan Abbasi
Syed Asad Hussain Bukhari
Muhammad Imran Khan
Muhammad Dawood
Muhammad Kamran
Mona H. Soliman
Muhammad Rizwan
Haifa Abdulaziz S. Alhaithloulf
Shafaqat Ali
28.1 Introduction
563(2)
28.2 Sources of Nitric Oxide Biosynthesis in Plants
565(1)
28.3 Effects of Nitric Oxide on Plants Under Abiotic Stresses
566(5)
28.3.1 Heavy Metals
566(1)
28.3.2 Drought
567(1)
28.3.3 Temperature
567(1)
28.3.4 Salinity
568(3)
28.3.4.1 Nitric Oxide-Mediated Mechanism of Salt Tolerance in Plants
571(1)
28.4 Role of Calcium Signaling During Abiotic Stresses
571(4)
28.4.1 Heavy Metals
572(1)
28.4.2 Drought Stress
573(1)
28.4.3 Salinity
574(1)
References
575(7)
29 Iron, Zinc, and Copper Application in Overcoming Environmental Stress 582(15)
Titash Dutta
Nageswara Rao Reddy Neelapu
Challa Surekha
29.1 Introduction
582(4)
29.2 Iron
586(1)
29.3 Zinc
587(1)
29.4 Copper
588(2)
29.5 Conclusion
590(1)
References
590(7)
30 Role of Selenium and Manganese in Mitigating Oxidative Damages 597(25)
Saket Chandra
Aryadeep Roychoudhury
30.1 Introduction
597(2)
30.2 Factors Augmenting Oxidative Stress
599(2)
30.2.1 Pollutants
600(1)
30.2.2 Herbicides
600(1)
30.2.3 Metals
600(1)
30.2.4 Drought
601(1)
30.2.5 Photosensitizing Toxins
601(1)
30.3 Effects of Heavy Metals on Plants
601(3)
30.3.1 Chromium (Cr)
602(1)
30.3.2 Manganese (Mn)
602(1)
30.3.3 Selenium (Se)
602(1)
30.3.4 Aluminum (Al)
603(1)
30.3.5 Nickel (Ni)
603(1)
30.3.6 Copper (Cu)
604(1)
30.3.7 Zinc (Zn)
604(1)
30.4 Role of Manganese (Mn) in Controlling Oxidative Stress
604(3)
30.5 Role of Selenium (Se) in Controlling Oxidative Stress
607(1)
30.6 Role of Antioxidants in Counteracting ROS
608(1)
30.6.1 Glutathione Peroxidase
608(1)
30.6.2 SOD Enzyme
608(1)
30.6.3 Additional Antioxidants
609(1)
30.7 Role of Se in Re-establishing Cellular Structure and Function
609(1)
30.8 Conclusion
610(1)
Acknowledgment
611(1)
References
611(11)
31 Role of Silicon Transportation Through Aquaporin Genes for Abiotic Stress Tolerance in Plants 622(13)
Ashwini Talakayala
Srinivas Ankanagari
Mallikarjuna Garladinne
31.1 Introduction
622(1)
31.2 Aquaporins
623(1)
31.3 Molecular Mechanism of Water and Si Transportation Through Aquaporins
624(1)
31.4 AQP Gating Influx/Outflux
624(3)
31.5 Si-induced AQP Trafficking
627(1)
31.6 Roles of Aquaporins in Plant-Water Relations Under Abiotic Stress
627(1)
31.7 Role of Silicon in Abiotic Stress Tolerance
627(1)
31.8 Si-mediated Drought Tolerance Through Aquaporins
627(1)
31.9 Si-mediated Salinity Tolerance Through Aquaporins
628(1)
31.10 Si-mediated Oxidative Tolerance Through Aquaporins
629(1)
31.11 Si Mediated Signal Transduction Pathway Under Biotic Stress
630(1)
31.12 Conclusion
630(1)
References
630(5)
32 Application of Nanoparticles in Overcoming Different Environmental Stresses 635(20)
Deepesh Bhatt
Megha D. Bhatt
Manoj Nath
Rachana Dudhat
Mayank Sharma
Deepak Singh Bisht
32.1 Introduction
635(2)
32.2 Physicochemical Properties of Nanoparticles
637(1)
32.2.1 Physical Properties
637(1)
32.2.2 Optical Properties
637(1)
32.2.3 Chemical Properties
637(1)
32.2.4 Electrical Properties
637(1)
32.3 Mode of Synthesis of Nanoparticles
638(1)
32.3.1 Physical Approach
638(1)
32.3.2 Chemical Approach
638(1)
32.3.3 Biological Approach (Green Synthesis)
639(1)
32.3.3.1 Nanoparticle Synthesis Using Bacteria
639(1)
32.3.3.2 Nanoparticle Synthesis Using Fungi
639(1)
32.3.3.3 Nanoparticle Synthesis Using Plants
639(1)
32.4 Types of Nanoparticles and Their Role in Stress Acclimation
639(7)
32.4.1 Silver Nanoparticles (AgNP)
639(2)
32.4.2 Gold Nanoparticles (AuNP)
641(1)
32.4.3 Silica Nanoparticles
642(1)
32.4.4 Silicon Nanoparticles (SiNP)
642(1)
32.4.5 Aluminum Nanoparticles (A1NP)
643(1)
32.4.6 Titanium Dioxide Nanoparticles (TiO2)
644(1)
32.4.7 Zinc Nanoparticles (ZiNP)
644(1)
32.4.8 Iron Nanoparticles (FeNP)
645(1)
32.4.9 Selenium Nanoparticles (SeNP)
646(1)
32.5 Types of Environmental Stresses
646(3)
32.6 Possible Protective Mechanism of Nanoparticles
649(1)
32.7 Conclusion and Future Perspectives
650(1)
References
650(5)
Index 655
ABOUT THE EDITORS

ARYADEEP ROYCHOUDHURY is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India.

DURGESH KUMAR TRIPATHI is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India.