Atjaunināt sīkdatņu piekrišanu

E-grāmata: Protein Engineering and Design

Edited by (State University of New York at Buffalo, USA), Edited by (Stanford University, California, USA)
  • Formāts: 416 pages
  • Izdošanas datums: 25-Sep-2009
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781420076592
  • Formāts - PDF+DRM
  • Cena: 60,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 416 pages
  • Izdošanas datums: 25-Sep-2009
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781420076592

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Experimental protein engineering and computational protein design are broad but complementary strategies for developing proteins with altered or novel structural properties and biological functions. By describing cutting-edge advances in both of these fields, Protein Engineering and Design aims to cultivate a synergistic approach to protein science.

Experimental Protein Engineering

The first half of the book discusses experimental approaches to protein engineering and starts by describing several high-throughput screening platforms for protein engineering. Key techniques used for diversity generation are also discussed. The next few chapters present examples of therapeutics, enzymes, biomaterials, and other proteins that have been engineered by rational or combinatorial approaches. The section finishes with a chapter on the use of non-natural amino acids in protein engineering.

Computational Protein Design

The second half of the book introduces computational protein design, beginning with a chapter on computational and informatics algorithms used in protein engineering. Core components of computational protein design are then discussed in detail, and examples of heuristic protein design are provided. Subsequent chapters present examples of how computational design has played a critical role in advancing the field of protein engineering. Concluding with a chapter outlining current challenges in the field, this book makes computational protein design and diversity-oriented protein engineering widely accessible to a broad audience in academia and industry alike.
Preface vii
Editors ix
Contributor List xi
Phage Display Systems for Protein Engineering
1(22)
Andreas Ernst
Sachdev S. Sidhu
Cell Surface Display Systems for Protein Engineering
23(28)
Sarah J. Moore
Mark J. Olsen
Jennifer R. Cochran
Frank V. Cochran
Cell-Free Display Systems for Protein Engineering
51(32)
Pamela A. Barendt
Casim A. Sarkar
Library Construction for Protein Engineering
83(26)
Dasa Lipovsek
Marco Mena
Shaun M. Lippow
Subhayu Basu
Brian M. Baynes
Design and Engineering of Synthetic Binding Proteins Using Nonantibody Scaffolds
109(22)
Shohei Koide
Combinatorial Enzyme Engineering
131(22)
Patrick C. Cirino
Christopher S. Frei
Engineering of Therapeutic Proteins
153(26)
Fei Wen
Sheryl B. Rubin-Pitel
Huimin Zhao
Protein Engineered Biomaterials
179(26)
Cheryl Wong Po Foo
Sarah C. Heilshorn
Protein Engineering Using Noncanonical Amino Acids
205(18)
Deniz Yuksel
Diren Pamuk
Yulia Ivanova
Krishna Kumar
Computer Graphics, Homology Modeling, and Bioinformatics
223(16)
David F. Green
Knowledge-Based Protein Design
239(18)
Michael A. Fisher
Shona C. Patel
Izhack Cherny
Michael H. Hecht
Molecular Force Fields
257(24)
Patrice Koehl
Rotamer Libraries for Molecular Modeling and Design of Proteins
281(12)
Hidetoshi Kono
Search Algorithms
293(20)
Julia M. Shifman
Menachem Fromer
Modulating Protein Structure
313(14)
M.S. Hanes
T.M. Handel
A.B. Chowdry
Modulation of Intrinsic Properties by Computational Design
327(16)
Vikas Nanda
Fei Xu
Daniel Hsieh
Modulating Protein Interactions by Rational and Computational Design
343(24)
Jonathan S. Marvin
Loren L. Looger
Future Challenges of Computational Protein Design
367(22)
Eun Jung Choi
Gurkan Guntas
Brian Kuhlman
Index] 389
Sheldon Park holds a B.A. in math and physics from the University of California (Berkeley), an M.S. in physics from Massachusetts Institute of Technology, and a Ph.D. in biophysics from Harvard University. He studied protein engineering and design while working as a postdoc for Dr. Jeffery Saven and Dr. Eric Boder at the University of Pennsylvania. Since 2006, he has been a professor of chemical and biological engineering at University at Buffalo. In his research, Dr. Park uses modeling and simulation to analyze protein molecules and uses high-throughput screening to engineer protein molecules of various structure and function. He is particularly interested in developing efficient methods of engineering complex protein molecules with potential biotechnological and biomedical applications.

Jennifer Cochran holds a B.S. in biochemistry from the University of Delaware and a Ph.D. in biological chemistry from Massachusetts Institute of Technology (MIT). She studied and developed combinatorial protein engineering methods while a postdoctoral fellow in the lab of K. Dane Wittrup in the Department of Biological Engineering at MIT. Since 2005, she has been a professor of bioengineering at Stanford University. Dr. Cochrans laboratory uses interdisciplinary approaches in chemistry, engineering, and biophysics tostudy complex biological systems and to create designer protein therapeutics and diagnostic agents for biomedical applications. She is interested in elucidating molecular details of receptor-mediated cell signaling events and at the same time developing protein and polymer-based tools that will allow manipulation of cell processes on a molecular level.