Atjaunināt sīkdatņu piekrišanu

E-grāmata: Protein Toxins in Modeling Biochemistry

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This succinct volume addresses the production of inactive, potentially toxic proteins in the absence of correct protein folding and the resultant neurodegenerative diseases. Other topics include intrinsic disorder in protein structure and function and the effects of molten globules on protein toxicity. This concise and yet thorough text also discusses using toxin structure as a model for studying structural and functional aspects of protein chemistry.  Protein Toxins in Modeling Biochemistry, a SpringerBrief, is essential reading for advanced researchers, scientists and advanced graduate students interested in protein chemistry and related areas of biochemistry and molecular science.

Protein folding .- Molten Globule.- Uniqueness of toxin structure and function .- Molten globule conformational implication on toxicity.
1 Introduction
1(4)
Raj Kumar
Bal Ram Singh
2 Introduction to Protein Folding
5(24)
Raj Kumar
Bal Ram Singh
2.1 Introduction
5(2)
2.2 Classification of Protein Family
7(1)
2.3 Types of Fold
8(1)
2.4 Domains of Proteins
9(1)
2.5 Protein Folding
10(8)
2.5.1 Conventional Views on Protein Folding
11(1)
2.5.2 Possible Mechanisms of Protein Folding
12(4)
2.5.3 Prediction of Folding from Sequence
16(2)
2.6 Theories of Protein Folding
18(5)
2.6.1 Ramachandran Plot
18(3)
2.6.2 Lattice Theory of Protein Folding
21(1)
2.6.3 Energy Landscape Theory of Protein Folding
21(2)
2.7 Molten Globule: An Important Intermediate in Protein Folding
23(2)
2.8 Concluding Remarks
25(4)
References
26(3)
3 Relevance of Intrinsic Disorder in Protein Structure and Function
29(44)
Thomas M. Feltrup
Raj Kumar
Bal Ram Singh
3.1 Definition of Intrinsically Disordered Proteins (IDPs)
29(3)
3.2 Experimental Tools to Identify Intrinsically Disordered Proteins
32(5)
3.2.1 X-ray Crystallography
32(1)
3.2.2 Small Angle X-ray Scattering (SAXS)
33(1)
3.2.3 Circular Dichroism (CD) Spectroscopy
33(1)
3.2.4 Nuclear Magnetic Resonance (NMR) Spectroscopy
34(1)
3.2.5 Protease Digestion
35(1)
3.2.6 Hydrodynamic Radius
36(1)
3.3 Protein Structural Disorder Predictors and Disorder Database
37(4)
3.3.1 Prediction of Natural Disordered Residues (PONDR)
37(1)
3.3.2 Fold Index
38(1)
3.3.3 DISOPRED2
39(1)
3.3.4 DisEMBLE
40(1)
3.3.5 GlobPlot
40(1)
3.3.6 DisProt Database
40(1)
3.4 Classification and Examples of Intrinsically Disordered Proteins
41(6)
3.4.1 Entropic Chains
41(4)
3.4.2 Protein Modification
45(1)
3.4.3 Molecular Assembly
45(1)
3.4.4 Molecular Recognition
45(2)
3.5 Functional Impact of Intrinsically Disordered Proteins
47(3)
3.6 Physiological Implications of Intrinsically Disordered Proteins
50(3)
3.6.1 Intrinsically Disordered Proteins in Neurodegenerative Disorders
50(1)
3.6.2 Intrinsically Disordered Proteins in Cancers
50(3)
3.6.3 Intrinsically Disordered Proteins as Drug Targets
53(1)
3.7 Toxins as Intrinsically Disordered Proteins
53(14)
3.7.1 Botulinum Neurotoxin
53(5)
3.7.2 Other Toxins as IDPs and the Importance of Disorder in Their Biological Function
58(9)
3.8 Conclusions
67(6)
References
68(5)
4 Implication of Molten Globule on the Function and Toxicity of a Protein
73(40)
Harkiran Preet Kaur Dhaliwal
Raj Kumar
Bal Ram Singh
4.1 Introduction
73(2)
4.2 Functional Native MG
75(5)
4.2.1 Clusterin
75(4)
4.2.2 NCBD
79(1)
4.2.3 Toxoplasma P2
79(1)
4.2.4 Histone Octamer
79(1)
4.3 Role of MGs in Cellular Processes
80(7)
4.3.1 Ligand Binding
82(3)
4.3.2 Protein Trafficking
85(2)
4.3.3 Role of MG States in Chaperone Function
87(1)
4.4 Impact of MG States on Enzymatic Activity
87(2)
4.4.1 Botulinum Neurotoxins
88(1)
4.4.2 Homocysteine Thiolactone
89(1)
4.5 Translocation of Toxins/Proteins Across the Membranes
89(12)
4.5.1 Colicins
90(1)
4.5.2 Staphylococcus aureus α-Toxin
91(1)
4.5.3 Diphtheria Toxin (DT)
91(2)
4.5.4 Pseudomonas aeruginosa Exotoxin A
93(1)
4.5.5 Role of MG State in Channel Formation for BoNT
93(1)
4.5.6 Anthrax Toxin
94(3)
4.5.7 Role of Pre-MG or MG State in RTX Toxins
97(3)
4.5.8 Proteins Involving MG State in Translocation Process Independent of pH
100(1)
4.6 Genetic Diseases
101(1)
4.7 Conclusions
101(12)
References
102(11)
5 Evolution of Toxin
113(22)
Raj Kumar
Bal Ram Singh
5.1 Introduction
113(1)
5.2 Animal Venoms and Bacterial Toxins
114(3)
5.3 The Role of Natural Selection/Adaptive Evolution
117(3)
5.3.1 Adaptive Evolution of Animal Toxin Structure
118(2)
5.4 Adaptive Evolution in Bacterial Toxins
120(1)
5.5 Mechanisms of Venom Evolution
121(3)
5.6 Mechanism of Evolution of Bacterial Toxins
124(2)
5.7 Co-evolution
126(1)
5.8 Structural Diversity and Its Connection with Evolution
127(3)
5.9 Molecular Flexibility and Functional Implications
130(1)
5.10 Summary
131(4)
References
132(3)
Epilogue 135(2)
Index 137