Atjaunināt sīkdatņu piekrišanu

Psychology-informed Recommender Systems [Mīkstie vāki]

  • Formāts: Paperback / softback, 122 pages, height x width: 234x156 mm, weight: 183 g
  • Sērija : Foundations and Trends® in Information Retrieval
  • Izdošanas datums: 15-Jul-2021
  • Izdevniecība: now publishers Inc
  • ISBN-10: 168083844X
  • ISBN-13: 9781680838442
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 122 pages, height x width: 234x156 mm, weight: 183 g
  • Sērija : Foundations and Trends® in Information Retrieval
  • Izdošanas datums: 15-Jul-2021
  • Izdevniecība: now publishers Inc
  • ISBN-10: 168083844X
  • ISBN-13: 9781680838442
Citas grāmatas par šo tēmu:
Personalized recommender systems have become indispensable in todays online world. Most of todays recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models that do not incorporate the underlying cognitive reasons for user behavior in the algorithms design. This survey presents a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process so-called psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affect-aware recommender systems. For each category, the authors highlight domains in which psychological theory plays a key role. Further, they discuss selected decision-psychological phenomena that impact the interaction between a user and a recommender. They also focus on related work that investigates the evaluation of recommender systems from the user perspective and highlight user-centric evaluation frameworks, and potential research tasks for future work at the end of this survey.
1. Introduction
2. Psychology-informed Recommendation Approaches
3. Recommender Systems and Human Decision Making
4. User-centric Recommender Systems Evaluation
5. Conclusion and Suggestions for Future Research
References