Atjaunināt sīkdatņu piekrišanu

E-grāmata: Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics

(San Diego State University, California, USA)
  • Formāts - EPUB+DRM
  • Cena: 65,12 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Pulsars, generally accepted to be rotating neutron stars, are dense, neutron-packed remnants of massive stars that blew apart in supernova explosions. They are typically about 10 kilometers across and spin rapidly, often making several hundred rotations per second. Depending on star mass, gravity compresses the matter in the cores of pulsars up to more than ten times the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes, from hyperon population to quark deconfinement to the formation of Boson condensates, may compete with each other. There are theoretical suggestions of even more "exotic" processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, ^T56Fe. In the latter event, pulsars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter.

These features combined with the tremendous recent progress in observational radio and x-ray astronomy make pulsars nearly ideal probes for a wide range of physical studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments. Written by an eminent author, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics gives a reliable account of the present status of such research, which naturally is to be performed at the interface between nuclear physics, particle physics, and Einstein's theory of relativity.

Recenzijas

"A remarkable reference work covering an enormous range of material from astrophysics to nuclear and particle physics in an interesting and accessible manner. This is a very important contribution to the literature." -Anthony W. Thomas, University of Adelaide, Australia

Preface xi
Introduction
1(22)
In search of the behavior of superdense matter
1(2)
Neutron stars as probes of superdense matter
3(14)
Abbreviations, natural units, and conversion factors
17(6)
Overview of relativistic stars
23(18)
History and idea of neutron stars
23(3)
From neutron stars to strange stars to white dwarfs
26(1)
Stars made up of absolutely stable strange quark matter
27(14)
The strange quark matter hypothesis
27(6)
Peculiarities of strange quark matter
33(8)
Observed neutron star properties
41(19)
Masses
41(4)
Pulsar distances and dispersion measure
45(1)
Rotational periods of pulsars
46(4)
Radii
50(1)
Pulsar braking
51(2)
Pulsar glitches
53(1)
Moment of inertia
54(1)
Gravitational redshift
55(1)
Magnetic fields and cyclotron lines
56(1)
Cooling data
57(3)
Physics of neutron star matter
60(9)
Low-density regime
60(3)
High-density regime
63(6)
Relativistic field-theoretical description of neutron star matter
69(47)
Choice of Lagrangian
69(6)
Field equations
75(5)
Relativistic Green functions
80(11)
Relativistic Hartree and Hartree-Fock approximation
91(5)
Relativistic T-matrix approximation
96(20)
T-matrix approximation versus Hartree-Fock
96(3)
Martin-Schwinger hierarchy
99(2)
Parameters of relativistic meson-exchange interactions
101(5)
Factorization of six-point Green function
106(4)
T-matrix in momentum space
110(3)
Spectral representation of T-matrix
113(3)
Spectral representation of the two-point Green function
116(30)
Finite-temperature two-point function
116(12)
Determination of baryon spectral function
128(13)
Application to free lepton propagator
138(3)
Baryon propagator in relativistic Hartree approximation
141(1)
Baryon number density
141(5)
Dense matter in the relativistic Hartree and Hartree-Fock approximations
146(47)
Self-energies in the Hartree-Fock approximation
146(5)
Self-energies in the Hartree approximation (Walecka model)
151(3)
Derivative coupling model
154(2)
Coupling constants and masses
156(6)
Summary of the many-body equations
162(2)
Properties of nuclear and neutron matter at zero and finite temperatures
164(12)
Baryon self-energies
176(6)
Baryon-lepton composition
182(7)
Microphysics behind π- and K- condensation
189(4)
Quark-hadron phase transition
193(10)
Conserved charges and internal forces
194(2)
Chemical thermodynamics
196(4)
Note on the structure of the quark-hadron phase
200(1)
Model for the equation of state
201(2)
Ladder approximation in the self-consistent baryon-antibaryon basis
203(17)
Self-consistent baryon-antibaryon basis
203(2)
Matrix elements of boson-exchange interactions
205(4)
Matrix elements of spectral functions
209(1)
Propagators in the self-consistent basis
210(2)
Matrix elements of baryon self-energies
212(6)
Scattering matrix in the self-consistent basis
218(2)
Partial-wave expansions
220(22)
Nucleon-nucleon matrix elements
220(5)
Nucleon-antinucleon matrix elements
225(3)
Isospin contribution of boson-exchange matrix elements
228(1)
Partial-wave expansion of scattering matrix
229(5)
Partial-wave expansion of baryon self-energies
234(8)
Dense matter in the relativistic ladder approximation
242(21)
Summary of the many-body equations
242(1)
Properties of symmetric and asymmetric nuclear matter
243(8)
Properties of chemically equilibrated stellar matter
251(12)
Models for the equation of state
263(48)
Equation of state in relativistic Hartree and Hartree-Fock approximations
266(8)
Thermal bosons and antibaryons
274(5)
Equation of state of a relativistic lepton gas
279(1)
Equation of state in the relativistic ladder approximation
280(11)
Non-relativistic limit
291(2)
Collection of selected neutron star matter equations of state
293(18)
General relativity in a nutshell
311(10)
Some formulae of tensor analysis
312(2)
Tensor manipulations
314(1)
Einstein's field equations
315(6)
Structure equations of non-rotating stars
321(37)
Energy-momentum tensor in covariant form
321(3)
Tolman-Oppenheimer-Volkoff equation
324(13)
Stability against radial oscillations
337(8)
Structure of non-rotating neutron stars
345(13)
Structure equations of rotating stars
358(31)
Rotational perturbations
365(8)
Monopole equations
373(2)
Quadrupole equations
375(5)
Dragging of local intertial frames inside rotating neutron stars
380(5)
Baryon number of a rotating star
385(1)
Redshift, blueshift, injection energy, stability parameter
385(4)
Criteria for maximum rotation
389(35)
Kepler frequency
389(5)
Empirical formula for Kepler frequency
394(8)
Dragging of local inertial frames neglected
395(2)
Inclusion of the frame dragging effect
397(5)
Gravitational-radiation reaction driven instability
402(22)
Qualitative picture
402(2)
Oscillations of rotating stars
404(6)
Application to l = m f-modes
410(14)
Models of rotating neutron stars
424(39)
Method of construction
424(4)
Stars rotating at the mass shedding frequency
424(3)
Stellar sequences of constant baryon number
427(1)
Stars of a given rotational mass
427(1)
Exact versus approximate solution of Einstein's equations
428(4)
Properties of rotating neutron stars
432(31)
Absolute bounds on neutron star properties set by mass shedding
432(14)
Properties of rotating neutron star sequences with constant baryon number
446(1)
Frequency dependence of hyperon thresholds and quark deconfinement
447(7)
Evolution of a pulsar's braking index
454(5)
Implications for searches for rapidly rotating pulsars
459(4)
Strange quark matter stars
463(59)
Description of strange quark matter
463(12)
Cold matter consisting of massless quarks
466(1)
Cold matter consisting of massive quarks
467(4)
Quark matter at finite temperature
471(4)
Hydrostatic equilibrium sequences of quark matter stars
475(1)
Electrostatic surface properties of strange stars
476(11)
Impact of finite temperatures on electron distribution
478(5)
Gap width at finite temperature
483(4)
Rotating strange stars enveloped in nuclear crusts
487(14)
Equation of state of strange stars carrying nuclear crusts
487(3)
Generic properties of strange stars
490(3)
Properties of rotating strange stars
493(4)
Moment of inertia
497(1)
Compatibility of strange-matter hypothesis with pulsar glitches
498(3)
Complete sequences of strange stars with nuclear crusts
501(11)
Strange stars versus neutron stars and white dwarfs
501(5)
Limiting rotational periods of strange stars
506(1)
Strange dwarfs versus white dwarfs
507(3)
Possible new class of dense white dwarfs
510(2)
Stability of strange stars against radial oscillations
512(4)
Eigenfrequencies of strange stars and strange dwarfs
512(3)
Schematic arguments for the stability of strange dwarfs against radial modes
515(1)
On the making of strange dwarfs
516(1)
Features of strange stars surveyed
517(5)
Cooling of neutron and strange stars
522(43)
Equation of thermal equilibrium (energy balance)
522(6)
Equation of energy transport
528(4)
Radiative energy transport by photon diffusion
528(2)
Conductive energy transport
530(1)
Photon diffusion and conduction combined
531(1)
Summary of stellar cooling equations
532(2)
Superfluidity
534(3)
Neutrino emissivities
537(7)
Neutrino pair bremsstrahlung
539(1)
Modified and direct Urca processes
540(2)
Quasi-particle processes in boson-condensed matter
542(1)
Quark processes
543(1)
Observed data
544(1)
Comparison with observation
545(7)
Standard cooling calculations
545(1)
Enhanced cooling via direct Urca process
546(2)
Enhanced cooling via pion condensation
548(1)
Enhanced cooling via kaon condensation
549(1)
Enhanced cooling driven by quark matter
550(2)
Strange quark matter stars
552(8)
Enhanced cooling of strange stars
552(2)
Slowly cooling strange stars
554(6)
Summary and concluding remarks about cooling
560(5)
A Notation 565(4)
A.1 Four-vectors in flat spacetime
565(1)
A.2 Dirac matrices
566(2)
A.3 Traces
568(1)
B Useful mathematical relationships 569(5)
B.1 Contour integrals
569(3)
B.2 Fourier transformations and related formulae
572(1)
B.3 Momentum integrals
573(1)
C Hartree---Fock self-energies at zero temperature 574(2)
D Hartree---Fock self-energies at finite temperature 576(7)
E Helicity-state matrix elements of boson-exchange interactions 583(6)
F Partial-wave expansion of boson-exchange interactions 589(16)
F.1 Amplitudes associated with pseudovector meson exchange
589(4)
F.2 Amplitudes associated with vector meson exchange
593(12)
G Rotating stars in general relativity 605(33)
G.1 Riemann-Christoffel tensor
605(16)
G.2 Ricci tensor
621(4)
G.3 Ricci scalar
625(1)
G.4 Einstein tensor
626(8)
G.5 Energy-momentum tensor
634(2)
G.6 Covariant derivatives of the energy-momentum tensor
636(2)
H Quark matter at finite temperature 638(5)
I Models of rotating relativistic neutron stars of selected masses 643(6)
J Equations of state in tabular form 649(1)
References 650(24)
Index 674


Fridolin Weber