Atjaunināt sīkdatņu piekrišanu

E-grāmata: q-Fractional Calculus and Equations

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2056
  • Izdošanas datums: 27-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642308987
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2056
  • Izdošanas datums: 27-Aug-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642308987

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jacksons type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular  q-SturmLiouville theory is also introduced; Greens function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types RiemannLiouville; GrünwaldLetnikov;  Caputo;  ErdélyiKober and Weyl are defined analytically. Fractional q-Leibniz rules with applications  in q-series are  also obtained with rigorous proofs of the formal  results of  Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-MellinBarnes integral  and Hankel contour integral representation of  the q-Mittag-Leffler functions under consideration,  the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wimans results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q2-Fourier transforms are studied and their applications are investigated.

Recenzijas

From the reviews:

This monograph briefly introduces q-calculus . The book is carefully and well written. Each chapter is introduced by an informative abstract. The bibliography is extensive and useful, and useful tables of formulas appear in appendices. This monograph is of interest to people who want to learn to do research in q-fractional calculus as well as to people currently doing research in q-fractional calculus. (P. W. Eloe, Mathematical Reviews, April, 2013)

1 Preliminaries.- 2 q-Difference Equations.- 3 q-Sturm Liouville
Problems.- 4 RiemannLiouville q-Fractional Calculi.- 5 Other q-Fractional
Calculi.- 6 Fractional q-Leibniz Rule and Applications.- 7 q-MittagLeffler
Functions.- 8 Fractional q-Difference Equations.- 9 Applications of
q-Integral Transforms.