Atjaunināt sīkdatņu piekrišanu

E-grāmata: QoS Prediction in Cloud and Service Computing: Approaches and Applications

  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a systematic and practical overview of Quality of Service prediction in cloud and service computing. Intended to thoroughly prepare the reader for research in cloud performance, the book first identifies common problems in QoS prediction and proposes three QoS prediction models to address them. Then it demonstrates the benefits of QoS prediction in two QoS-aware research areas. Lastly, it collects large-scale real-world temporal QoS data and publicly releases the datasets, making it a valuable resource for the research community. The book will appeal to professionals involved in cloud computing and graduate students working on QoS-related problems. 

1. Introduction.- 2. Neighborhood-Based QoS Prediction.- 3. Time-Aware
Model-Based QoS Prediction.- 4. Online QoS Prediction.- 5. QoS-AwareWeb
Service Searching.- 6. QoS-Aware Byzantine Fault Tolerance.- 7. Conclusion
and Discussion.
Yilei Zhang received his PhD in Computer Science from the Chinese University of Hong Kong. His industry-specific experience in cloud and big data spans several years as an IT professional. His research interests include big data, service computing and cloud computing. He has served as a reviewer for a number of international journals as well as conferences including TSE, TR, TSC, WWW, WSDM, KDD, ISSRE, etc. He received the best student paper award at the ICWS 2010.









Michael R. Lyu received his PhD in Computer Science from the University of California, Los Angeles. He is currently a Professor at the Chinese University of Hong Kongs Computer Science and Engineering Department. He has published 450 peer-reviewed journal and conference papers. His research interests include software reliability engineering, distributed systems, fault-tolerant computing, service computing, multimedia information retrieval, and machine learning. He was named as the IEEE Reliability Society Engineer of the Year in 2010. He is a fellow of the IEEE, ACM and AAAS.