Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quadratic Isoperimetric Inequality for Mapping Tori of Free Group Automorphisms

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 99,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The authors prove that if $F$ is a finitely generated free group and $\phi$ is an automorphism of $F$ then $F\rtimes_\phi\mathbb Z$ satisfies a quadratic isoperimetric inequality. The authors' proof of this theorem rests on a direct study of the geometry of van Kampen diagrams over the natural presentations of free-by-cylic groups. The main focus of this study is on the dynamics of the time flow of $t$-corridors, where $t$ is the generator of the $\mathbb Z$ factor in $F\rtimes_\phi\mathbb Z$ and a $t$-corridor is a chain of 2-cells extending across a van Kampen diagram with adjacent 2-cells abutting along an edge labelled $t$. The authors prove that the length of $t$-corridors in any least-area diagram is bounded by a constant times the perimeter of the diagram, where the constant depends only on $\phi$. The authors' proof that such a constant exists involves a detailed analysis of the ways in which the length of a word $w\in F$ can grow and shrink as one replaces $w$ by a sequence of words $w_m$, where $w_m$ is obtained from $\phi(w_{m-1})$ by various cancellation processes. In order to make this analysis feasible, the authors develop a refinement of the improved relative train track technology due to Bestvina, Feighn and Handel. Table of Contents: Positive automorphisms; Train tracks and the beaded decomposition; The General Case; Bibliography; Index. (MEMO/203/955)
Introduction ix
Acknowledgements xii
Part 1 Positive Automorphisms
1(60)
1.1 Van Kampen diagrams
3(4)
1.2 Singularities and bounded cancellation
7(3)
1.3 Past, future and colour
10(2)
1.4 Strategy, strata and conditioning
12(2)
1.5 Preferred futures, fast letters and cancellation
14(3)
1.6 Counting non-constant letters
17(5)
1.7 The bound on ΣμS0 / A4(S0, μ)| and ΣμSo |A2(S0,μ)|
22(4)
1.8 The pleasingly rapid consumption of colours
26(11)
1.9 Teams and their associates
37(14)
1.10 The Bonus Scheme
51(7)
1.11 The proof of Theorem C
58(1)
1.12 Glossary of constants
59(2)
Part 2 Train Tracks and the Beaded Decomposition
61(32)
2.1 Improved relative train track maps
63(5)
2.2 Hard splittings
68(3)
2.3 A small reduction
71(1)
2.4 Nibbled futures
72(9)
2.5 Passing to an iterate of f
81(2)
2.6 The nibbled futures of GEPs
83(5)
2.7 Proof of the Beaded Decomposition Theorem
88(1)
2.8 Refinements of the Beaded Decomposition Theorem
88(5)
Part 3 The General Case
93(56)
3.1 The structure of diagrams
95(3)
3.2 Adapting diagrams to the beaded decomposition
98(2)
3.3 Linear bounds on the length of corridors
100(1)
3.4 Replacing f by a suitable iterate
100(3)
3.5 Preferred futures of beads
103(4)
3.6 Counting fast beads
107(3)
3.7 HNP-cancellation and reapers
110(8)
3.8 Non-fast and unbounded beads
118(3)
3.9 The pleasingly rapid disappearance of colours
121(10)
3.10 Teams
131(7)
3.11 The Bonus Scheme
138(1)
3.12 From bead norm to length
139(2)
3.13 Corridor length functions and bracketing
141(4)
3.14 On a result of Brinkmann
145(4)
Bibliography 149(2)
Index 151