Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quadratic Vector Equations on Complex Upper Half-Plane

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 103,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The authors consider the nonlinear equation $-\frac 1m=z+Sm$ with a parameter $z$ in the complex upper half plane $\mathbb H $, where $S$ is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in $ \mathbb H$ is unique and its $z$-dependence is conveniently described as the Stieltjes transforms of a family of measures $v$ on $\mathbb R$. In a previous paper the authors qualitatively identified the possible singular behaviors of $v$: under suitable conditions on $S$ we showed that in the density of $v$ only algebraic singularities of degree two or three may occur.

In this paper the authors give a comprehensive analysis of these singularities with uniform quantitative controls. They also find a universal shape describing the transition regime between the square root and cubic root singularities. Finally, motivated by random matrix applications in the authors' companion paper they present a complete stability analysis of the equation for any $z\in \mathbb H$, including the vicinity of the singularities.
Chapter 1 Introduction
1(4)
Chapter 2 Set-up and main results
5(16)
2.1 Generating density
7(6)
2.2 Stability
13(3)
2.3 Relationship between Theorem 2.6 and Theorem 2.6 of [ AEK16b]
16(1)
2.4 Outline of proofs
17(4)
Chapter 3 Local laws for large random matrices
21(6)
3.1 Proof of local law inside bulk of the spectrum
23(4)
Chapter 4 Existence, uniqueness and L2-bound
27(8)
4.1 Stieltjes transform representation
30(2)
4.2 Operator F and structural L2-bound
32(3)
Chapter 5 Properties of solution
35(12)
5.1 Relations between components of m and F
35(6)
5.2 Stability and operator B
41(6)
Chapter 6 Uniform bounds
47(8)
6.1 Uniform bounds from L2-estimates
49(2)
6.2 Uniform bound around z = 0 when a = 0
51(4)
Chapter 7 Regularity of solution
55(8)
Chapter 8 Perturbations when generating density is small
63(10)
8.1 Expansion of operator B
64(4)
8.2 Cubic equation
68(5)
Chapter 9 Behavior of generating density where it is small
73(28)
9.1 Expansion around non-zero minima of generating density
77(4)
9.2 Expansions around minima where generating density vanishes
81(15)
9.3 Proofs of Theorems 2.6 and 2.11
96(5)
Chapter 10 Stability around small minima of generating density
101(6)
Chapter 11 Examples
107(10)
11.1 The band operator, lack of self-averaging, and property A3
108(1)
11.2 Divergences in SB, outliers, and function T
108(4)
11.3 Blow-up at z = 0 when a = 0 and assumption B1
112(1)
11.4 Effects of non-constant function a
113(1)
11.5 Discretization and reduction of the QVE
113(2)
11.6 Simple example that exhibits all universal shapes
115(2)
Appendix A Appendix
117(14)
A.1 Proofs of auxiliary results in
Chapter 4
118(1)
A.2 Proofs of auxiliary results in
Chapter 5
119(1)
A.3 Scalability of matrices with non-negative entries
120(3)
A.4 Variational bounds when Re z = 0
123(3)
A.5 Holder continuity of Stieltjes transform
126(2)
A.6 Cubic roots and associated auxiliary functions
128(3)
Bibliography 131
Oskari Ajanki, Institute of Science and Technology, Klosterneuberg, Austria.

Laszlo Erdos, Institute of Science and Technology, Klosterneuberg, Austria.

Torben Kruger, Institute of Science and Technology, Klosterneuberg, Austria.