nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
List of Symbols | |
Preface | |
Introduction | |
Background from Algebraic Number Theory | |
Quadratic Fields: Integers and Units | |
The Arithmetic of Ideals in Quadratic Fields | |
The Class Group and Class Number | |
Reduced Ideals | |
Quadratic Orders | |
Powerful Numbers: An Application of Real Quadratics | |
Continued Fractions Applied to Quadratic Fields | |
Continued Fractions and Real Quadratics: The Infrastructure | |
The Continued Fraction Analogue for Complex Quadratics | |
Diophantine Equations and Class Numbers | |
Class Numbers and Complex Quadratics | |
Real Quadratics and Diophantine Equations | |
Reduced Ideals and Diophantine Equations | |
Class Numbers and Real Quadratics | |
Halfway to a Solution | |
Prime-Producing Polynomials | |
Complex Prime-Producers | |
Real Prime-Producers | |
Density of Primes | |
Class Numbers: Criteria and Bounds | |
Factoring Rabinowitsch | |
Class Number One Criteria | |
Class Number Bounds via the Divisor Function | |
The GRH: Relevance of the Riemann Hypothesis | |
Ambiguous Ideals | |
Ambiguous Cycles in Real Orders: The Palindromic Index | |
Exponent Two | |
Influence of the Infrastructure | |
Quadratic Residue Covers | |
Consecutive Powers | |
Algorithms | |
Computation of the Class Number of a Real Quadratic Field | |
Cryptology | |
Implications of Computational Mathematics for the Philosophy of Mathematics | |
Appendix A: Tables | |
Table A1: This is a list of all positive fundamental radicands with class number h? = 1 and period length l , of the simple continued fraction expansion of the principal class, less then 24. Table A8 is known to be unconditionally complete whereas Table |
|
A1 is complete with one GRH-ruled out exception, as are Tables A2-A4, A6-A7 and A9 | |
Table A2: This is a subset of Table A1 with D ? 1 (mod 8) | |
Table A3: h? = 2 for fundamental radicands D > 0 with l ? 24 | |
Table A4: This is a list of all fundamental radicands of ERD-type with class groups of exponent 2, broken down into three parts depending on congruence modulo 4 of the radicand | |
Table A5: This three-part table is an illustration of a computer run done for the proof of Theorem 6.2.2 | |
Table A6: This is a list of all fundamental radicands D > 0 of ERD-type having no split primes less than the Minkowski bound | |
Table A7: This is a complete list of all fundamental radicands D > 0 with n? ? 0 (see Exercise 3.2.11) and associated regulators, such that the class number is 1 | |
Table A8: This is a list of all fundamental discriminants D ? 1 (mod 8) of ERD-type with class number less than 24, and is known to be unconditionally complete | |
Table A9: This table lists all fundamental discriminants of ERD-type with class number 2 | |
Appendix B: Fundamental Units of Real Quadratic Fields | |
This list is broken up into three parts according to congruence modulo 4 of fundamental radicands less than 2 . 103 | |
Appendix C: Class Numbers of Real Quadratic Fields | |
This table is presented in matrix form with each entry describing a specified class number together with the norm of the fundamental unit with radicands less than 104 | |
Appendix D: Class Numbers of Complex Quadratic Fields (and their class group structure) | |
This is a table of fundamental radicands D |