Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quadrature Theory

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 126,45 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which form the central organizing principle for the authors' theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.
Preface vii
Chapter 1 Introduction
1(6)
Chapter 2 The Abstract Framework
7(22)
2.1 Standard estimation framework
7(9)
2.2 Linear rules that are exact on a subspace
16(5)
2.3 Strong optimality: inner product spaces
21(5)
2.4 Varying the observation
26(3)
Chapter 3 Norm and Kernel of the Remainder Functional
29(18)
3.1 Norm of an estimation rule
29(4)
3.2 The interpolation theorem
33(3)
3.3 Quadrature formulas and one-sided approximation
36(4)
3.4 Krein's theory
40(7)
Chapter 4 Co-observations
47(52)
4.1 Survey
47(3)
4.2 The Peano kernel theorem
50(9)
4.3 Bounded derivatives as co-observation
59(4)
4.4 Bounded variation as co-observation
63(3)
4.5 Error bounds using the modulus of continuity
66(6)
4.6 Derivatives of bounded variation
72(1)
4.7 Sard's co-observation
73(3)
4.8 Co-observation of Davis type
76(6)
4.9 Bounds in the complex plane as co-observations
82(11)
4.10 Convex functions
93(6)
Chapter 5 Quadrature Rules of Interpolatory Type
99(50)
5.1 Recapitulation
99(5)
5.2 The Newton-Cotes method
104(6)
5.3 A theorem of Sloan and Smith
110(4)
5.4 Error bounds for the Clenshaw-Curtis method
114(7)
5.5 Relatives of the Clenshaw-Curtis method
121(9)
5.6 The distribution of nodes
130(5)
5.7 Bounds for the norms of Peano kernels of interpolatory rules
135(9)
5.8 Asymptotic behaviour of a class of Peano kernels
144(5)
Chapter 6 Gaussian Quadrature
149(62)
6.1 Rules of high degree and orthogonal polynomials
149(7)
6.2 Coefficients and nodes for general weights
156(6)
6.3 Nodes and coefficients for w = 1
162(4)
6.4 Peano kernels for general weights
166(7)
6.5 Peano kernels for w = 1
173(7)
6.6 Error bounds
180(9)
6.7 Asymptotics of the error
189(6)
6.8 Extremal properties of Gaussian rules
195(2)
6.9 Why Gaussian quadrature?
197(4)
6.10 The Kronrod method
201(3)
6.11 Kronrod rules for w = 1
204(7)
Chapter 7 Quadrature Rules with Equidistant Nodes
211(50)
7.1 The trapezoidal method and the Euler-Maclaurin formula
211(6)
7.2 More on the trapezoidal method
217(13)
7.3 Simpson's method
230(3)
7.4 The Filon method
233(3)
7.5 Gregory methods
236(8)
7.6 Romberg methods
244(10)
7.7 Equidistant nodes and the degree of polynomial exactness
254(2)
7.8 The midpoint method
256(5)
Chapter 8 Periodic Integrands
261(30)
8.1 The special role of the trapezoidal rule for w = 1
261(3)
8.2 Error bounds for the trapezoidal rule
264(7)
8.3 Trigonometric interpolation
271(2)
8.4 Universality
273(3)
8.5 Standard rules for Fourier coefficients
276(7)
8.6 Other rules for Fourier coefficients
283(8)
Chapter 9 Variance and Chebyshev-type Rules
291(16)
9.1 Fundamentals
291(5)
9.2 Chebyshev methods
296(3)
9.3 The special case of w = 1
299(4)
9.4 Variance
303(4)
Chapter 10 Problems
307(8)
Appendix A Orthogonal Polynomials
315(10)
Appendix B Bernoulli Polynomials
325(4)
Appendix C Validation of Co-observations
329(6)
C.1 Automatic generation of Taylor coefficients
329(2)
C.2 Real interval arithmetic
331(2)
C.3 Complex interval arithmetic
333(2)
Bibliography
335(22)
Books on quadrature
335(1)
References
336(21)
Symbols 357(4)
Index 361