Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quality, Reliability, Security and Robustness in Heterogeneous Systems: 17th EAI International Conference, QShine 2021, Virtual Event, November 29-30, 2021, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed post-conference proceedings of the 17th EAI International Conference on Quality, Reliability, Security and Robustness in Heterogeneous Networks, QShine 2021, held in November 2020. Due to COVID-19 pandemic the conference was held virtually.
The 20 revised full papers were carefully reviewed and selected from 43 submissions. The papers are organized thematically in tracks Machine Learning in Distributed Networks; 5G Networks and Security; IoT Security and Lightweight Cryptography; Network Security; and Privacy-preserving Emerging Networked Applications.
Machine Learning in Distributed Networks.- FedDICE: A ransomware spread
detection in a distributed integrated clinical environment using federated
learning and SDN based mitigation.- Accelerating TEE-based DNN Inference
Using Mean Shift Network Pruning.- Towards Secure and Trustworthy
Crowdsourcing with Versatile Data Analytics.- Blockchain Networks and
Blockchain-based Applications.- Blockchain for IoT : A Critical Analysis
Concerning Performance and Scalability.- Toward Achieving Unanimity for
Implicit Closings in a Trustless System.- DBS: Blockchain-based
privacy-preserving RBAC in IoT.- 5G Networks and Security.-  8 A Lightweight
Authentication Protocol for 5G Cellular Network Connected Drones.-
Anti-eavesdropping Proportional Fairness Access Control for 5G Networks.-
Joint Relay Selection and Frequency Allocationfor D2D Communications.- IoT
Security and Lightweight Cryptography 11 Chaos and Logistic Map based Key
Generation Technique for AES-driven IoT Security.- A UsabilityStudy of
Cryptographic API Design.- An S-box Design using Irreducible Polynomial with
Affine Transformation for Lightweight Cipher.- The Phantom Gradient Attack: A
Study Of Replacement Functions For The XOR Function.- Network Security 15
Topology Validator - Defense against Topology Poisoning Attack in SDN.-
Towards an Attention-based Accurate Intrusion Detection Approach.- Avoiding
VPN Bottlenecks: Exploring Network-Level client Identity Validation Options.-
Privacy-preserving Emerging Networked Applications.- Privacy-Preserving
Ranked Searchable Encryption Based on Differential Privacy.- Memory-efficient
Encrypted Search using Trusted Execution Environment Viet Vo.