Atjaunināt sīkdatņu piekrišanu

Quantifying Research Integrity [Mīkstie vāki]

Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 80,72 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Citas grāmatas par šo tēmu:
Institutions typically treat research integrity violations as black and white, right or wrong. The result is that the wide range of grayscale nuances that separate accident, carelessness and bad practice from deliberate fraud and malpractice often get lost. This lecture looks at how to quantify the grayscale range in three kinds of research integrity violations: plagiarism, data falsification, and image manipulation.

Quantification works best with plagiarism, because the essential one-to one matching algorithms are well known and established tools for detecting when matches exist. Questions remain, however, how many matching words of what kind in what location in which discipline constitute reasonable suspicion of fraudulent intent. Different disciplines take different perspectives on quantity and location. Quantification is harder with data falsification, because the original data are often not available, and because experimental replication remains surprisingly difficult. The same is true with image manipulation, where tools exist for detecting certain kinds of manipulations, but where the tools are also easily defeated.

This lecture looks at how to prevent violations of research integrity from a pragmatic viewpoint, and at what steps can institutions and publishers take to discourage problems beyond the usual ethical admonitions. There are no simple answers, but two measures can help: the systematic use of detection tools and requiring original data and images. These alone do not suffice, but they represent a start.

The scholarly community needs a better awareness of the complexity of research integrity decisions. Only an open and wide-spread international discussion can bring about a consensus on where the boundary lines are and when grayscale problems shade into black. One goal of this work is to move that discussion forward.
Preface xvii
Acknowledgments xix
1 Introduction
1(4)
1.1 Overview
1(1)
1.2 Context
1(1)
1.3 Time
2(1)
1.4 Images
3(2)
2 State of the Art
5(10)
2.1 Introduction
5(1)
2.2 Legal Issues
6(1)
2.3 Ethics
6(2)
2.3.1 Second-language Students
7(1)
2.3.2 Self-plagiarism
8(1)
2.4 Prevention
8(2)
2.4.1 Education
8(1)
2.4.2 Detection as Prevention
9(1)
2.5 Detection Tools
10(3)
2.5.1 Plagiarism Tools
10(1)
2.5.2 iThenticate
11(1)
2.5.3 Crowdsourcing
12(1)
2.5.4 Image-manipulation Tools
12(1)
2.6 Replication
13(2)
3 Quantifying Plagiarism
15(28)
3.1 Overview
15(5)
3.1.1 History
15(1)
3.1.2 Definition
16(1)
3.1.3 Pages and Percents
16(1)
3.1.4 Context, Quotes, and References
17(1)
3.1.5 Sentences, Paragraphs, and Other Units
18(1)
3.1.6 Self-plagiarism
19(1)
3.2 In the Humanities
20(9)
3.2.1 Overview
20(1)
3.2.2 Paragraph-length Examples
21(3)
3.2.3 Book-length Examples
24(5)
3.3 In the Social Sciences
29(6)
3.3.1 Overview
29(1)
3.3.2 Example 1
30(2)
3.3.3 Example 2
32(3)
3.4 In the Natural Sciences
35(6)
3.4.1 Overview
35(1)
3.4.2 Example 1
36(4)
3.4.3 Example 2
40(1)
3.5 Conclusion: Plagiarism
41(2)
4 Quantifying Data Falsification
43(32)
4.1 Introduction
43(1)
4.2 Metadata
44(2)
4.3 Humanities
46(7)
4.3.1 Introduction
46(2)
4.3.2 History
48(1)
4.3.3 Art and Art History
49(2)
4.3.4 Ethnography
51(1)
4.3.5 Literature
52(1)
4.4 Social Sciences
53(10)
4.4.1 Introduction
53(1)
4.4.2 Replication Studies
54(2)
4.4.3 Diederik Stapel
56(3)
4.4.4 James Hunton
59(2)
4.4.5 Database Revisions
61(1)
4.4.6 Data Manipulation
62(1)
4.5 Natural Sciences
63(9)
4.5.1 Introduction
63(2)
4.5.2 Lab Sciences
65(1)
4.5.3 Medical Sciences
66(1)
4.5.4 Computing and Statistics
67(4)
4.5.5 Other Non-lab Sciences
71(1)
4.6 Conclusion
72(3)
5 Quantifying Image Manipulation
75(28)
5.1 Introduction
75(1)
5.2 Digital Imaging Technology
76(6)
5.2.1 Background
76(1)
5.2.2 How a Digital Camera Works
76(2)
5.2.3 RAW Format
78(1)
5.2.4 Discovery Analytics
79(2)
5.2.5 Digital Video
81(1)
5.3 Arts and Humanities
82(3)
5.3.1 Introduction
82(1)
5.3.2 Arts
83(1)
5.3.3 Humanities
84(1)
5.4 Social Sciences and Computing
85(4)
5.4.1 Overview
85(1)
5.4.2 Training and Visualization
85(3)
5.4.3 Standard Manipulations
88(1)
5.5 Biology
89(4)
5.5.1 Legitimate Manipulations
89(2)
5.5.2 Illegitimate Manipulations
91(2)
5.6 Medicine
93(4)
5.6.1 Limits
93(2)
5.6.2 Case 1
95(1)
5.6.3 Case 2
95(2)
5.7 Other Natural Sciences
97(2)
5.8 Detection Tools and Services
99(2)
5.9 Conclusion
101(2)
6 Applying the Metrics
103(8)
6.1 Introduction
103(1)
6.2 Detecting Gray Zones
103(2)
6.3 Determining Falsification
105(1)
6.4 Prevention
106(1)
6.5 Conclusion
107(1)
6.6 HEADT Centre
108(3)
Bibliography 111(10)
Author's Biography 121