1 Quantile Functions |
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Definitions and Properties |
|
|
3 | (6) |
|
1.3 Quantile Functions of Life Distributions |
|
|
9 | (1) |
|
1.4 Descriptive Quantile Measures |
|
|
9 | (7) |
|
|
16 | (4) |
|
|
20 | (6) |
|
1.7 Diagrammatic Representations |
|
|
26 | (3) |
2 Quantile-Based Reliability Concepts |
|
29 | (30) |
|
2.1 Concepts Based on Distribution Functions |
|
|
29 | (12) |
|
2.1.1 Hazard Rate Function |
|
|
30 | (2) |
|
2.1.2 Mean Residual Life Function |
|
|
32 | (4) |
|
2.1.3 Variance Residual Life Function |
|
|
36 | (3) |
|
2.1.4 Percentile Residual Life Function |
|
|
39 | (2) |
|
2.2 Reliability Functions in Reversed Time |
|
|
41 | (5) |
|
2.2.1 Reversed Hazard Rate |
|
|
41 | (2) |
|
2.2.2 Reversed Mean Residual Life |
|
|
43 | (2) |
|
2.2.3 Some Other Functions |
|
|
45 | (1) |
|
2.3 Hazard Quantile Function |
|
|
46 | (5) |
|
2.4 Mean Residual Quantile Function |
|
|
51 | (3) |
|
2.5 Residual Variance Quantile Function |
|
|
54 | (2) |
|
2.6 Other Quantile Functions |
|
|
56 | (3) |
3 Quantile Function Models |
|
59 | (46) |
|
|
59 | (1) |
|
|
60 | (28) |
|
3.2.1 Generalized Lambda Distribution |
|
|
62 | (13) |
|
3.2.2 Generalized Tukey Lambda Family |
|
|
75 | (6) |
|
3.2.3 van Staden-Loots Model |
|
|
81 | (4) |
|
3.2.4 Five-Parameter Lambda Family |
|
|
85 | (3) |
|
3.3 Power-Pareto Distribution |
|
|
88 | (5) |
|
3.4 Govindarajulu's Distribution |
|
|
93 | (5) |
|
3.5 Generalized Weibull Family |
|
|
98 | (2) |
|
3.6 Applications to Lifetime Data |
|
|
100 | (5) |
4 Ageing Concepts |
|
105 | (62) |
|
|
105 | (2) |
|
4.2 Reliability Operations |
|
|
107 | (6) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
4.2.5 Equilibrium Distributions |
|
|
110 | (3) |
|
4.3 Classes Based on Hazard Quantile Function |
|
|
113 | (17) |
|
4.3.1 Monotone Hazard Rate Classes |
|
|
113 | (9) |
|
4.3.2 Increasing Hazard Rate(2) |
|
|
122 | (1) |
|
4.3.3 New Better Than Used in Hazard Rate |
|
|
123 | (2) |
|
4.3.4 Stochastically Increasing Hazard Rates |
|
|
125 | (1) |
|
4.3.5 Increasing Hazard Rate Average |
|
|
126 | (2) |
|
4.3.6 Decreasing Mean Time to Failure |
|
|
128 | (2) |
|
4.4 Classes Based on Residual Quantile Function |
|
|
130 | (10) |
|
4.4.1 Decreasing Mean Residual Life Class |
|
|
130 | (4) |
|
4.4.2 Used Better Than Aged Class |
|
|
134 | (2) |
|
4.4.3 Decreasing Variance Residual Life |
|
|
136 | (3) |
|
4.4.4 Decreasing Percentile Residual Life Functions |
|
|
139 | (1) |
|
4.5 Concepts Based on Survival Functions |
|
|
140 | (16) |
|
4.5.1 New Better Than Used |
|
|
140 | (6) |
|
4.5.2 New Better Than Used in Convex Order |
|
|
146 | (3) |
|
4.5.3 New Better Than Used in Expectation |
|
|
149 | (2) |
|
4.5.4 Harmonically New Better Than Used |
|
|
151 | (2) |
|
|
153 | (1) |
|
4.5.6 Renewal Ageing Notions |
|
|
154 | (2) |
|
4.6 Classes Based on Concepts in Reversed Time |
|
|
156 | (2) |
|
|
158 | (9) |
|
4.7.1 Analysis of Quantile Functions |
|
|
158 | (5) |
|
|
163 | (4) |
5 Total Time on Test Transforms |
|
167 | (32) |
|
|
168 | (1) |
|
5.2 Definitions and Properties |
|
|
168 | (6) |
|
5.3 Relationships with Other Curves |
|
|
174 | (8) |
|
5.4 Characterizations of Ageing Concepts |
|
|
182 | (3) |
|
|
185 | (6) |
|
5.6 Characterizations of Distributions |
|
|
191 | (2) |
|
|
193 | (6) |
6 L-Moments of Residual Life and Partial Moments |
|
199 | (36) |
|
|
200 | (1) |
|
6.2 Definition and Properties of L-Moments of Residual Life |
|
|
201 | (10) |
|
6.3 L-Moments of Reversed Residual Life |
|
|
211 | (2) |
|
|
213 | (11) |
|
|
224 | (1) |
|
|
225 | (5) |
|
|
230 | (5) |
7 Nonmonotone Hazard Quantile Functions |
|
235 | (46) |
|
|
236 | (1) |
|
7.2 Two-Parameter BT and UBT Hazard Functions |
|
|
236 | (12) |
|
7.3 Three-Parameter BT and UBT Models |
|
|
248 | (13) |
|
7.4 More Flexible Hazard Rate Functions |
|
|
261 | (6) |
|
7.5 Some General Methods of Construction |
|
|
267 | (2) |
|
7.6 Quantile Function Models |
|
|
269 | (12) |
|
7.6.1 Bathtub Hazard Quantile Functions Using Total Time on Test Transforms |
|
|
269 | (4) |
|
7.6.2 Models Using Properties of Score Function |
|
|
273 | (8) |
8 Stochastic Orders in Reliability |
|
281 | (46) |
|
|
281 | (2) |
|
8.2 Usual Stochastic Order |
|
|
283 | (4) |
|
|
287 | (4) |
|
8.4 Mean Residual Life Order |
|
|
291 | (7) |
|
8.5 Renewal and Harmonic Renewal Mean Residual Life Orders |
|
|
298 | (4) |
|
8.6 Variance Residual Life Order |
|
|
302 | (1) |
|
8.7 Percentile Residual Life Order |
|
|
303 | (3) |
|
8.8 Stochastic Order by Functions in Reversed Time |
|
|
306 | (5) |
|
8.8.1 Reversed Hazard Rate Order |
|
|
306 | (2) |
|
8.8.2 Other Orders in Reversed Time |
|
|
308 | (3) |
|
8.9 Total Time on Test Transform Order |
|
|
311 | (3) |
|
8.10 Stochastic Orders Based on Ageing Criteria |
|
|
314 | (6) |
|
|
320 | (2) |
|
|
322 | (5) |
9 Estimation and Modelling |
|
327 | (34) |
|
|
327 | (1) |
|
9.2 Method of Percentiles |
|
|
328 | (6) |
|
|
334 | (10) |
|
9.3.1 Conventional Moments |
|
|
334 | (2) |
|
|
336 | (5) |
|
9.3.3 Probability Weighted Moments |
|
|
341 | (3) |
|
9.4 Method of Maximum Likelihood |
|
|
344 | (2) |
|
9.5 Estimation of the Quantile Density Function |
|
|
346 | (4) |
|
9.6 Estimation of the Hazard Quantile Function |
|
|
350 | (2) |
|
9.7 Estimation of Percentile Residual Life |
|
|
352 | (3) |
|
9.8 Modelling Failure Time Data |
|
|
355 | (1) |
|
|
356 | (2) |
|
9.10 Model Fitting and Validation |
|
|
358 | (3) |
References |
|
361 | (24) |
Index |
|
385 | (6) |
Author Index |
|
391 | |