Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantitative Biosciences Companion in R: Dynamics across Cells, Organisms, and Populations

  • Formāts: 272 pages
  • Izdošanas datums: 09-Jan-2024
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691259604
  • Formāts - PDF+DRM
  • Cena: 21,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 272 pages
  • Izdošanas datums: 09-Jan-2024
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691259604

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A hands-on lab guide in the R programming language that enables students in the life sciences to reason quantitatively about living systems across scales

This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty.

  • Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities
  • Encourages good coding practices, clear and understandable modeling, and accessible presentation of results
  • Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale
  • Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations
  • Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own
  • Stand-alone computational lab guides for Quantitative Biosciences also available in Python and MATLAB
Joshua S. Weitz is professor and the Clark Leadership Chair in Data Analytics in the Department of Biology at the University of Maryland. Previously, he held the Tom and Marie Patton Chair in Biological Sciences at the Georgia Institute of Technology, where he founded the Interdisciplinary Graduate Program in Quantitative Biosciences. He is the author of Quantitative Viral Ecology (Princeton). Marian Domķnguez-Mirazo is a PhD candidate in Quantitative Biosciences in the School of Biological Sciences at the Georgia Institute of Technology.