|
|
1 | (18) |
|
1.1 Why "Quantitative" Scanning Probe Microscopy? |
|
|
1 | (5) |
|
|
2 | (2) |
|
1.1.2 Available Numerical Techniques |
|
|
4 | (2) |
|
1.2 What Is Scanning Probe Microscopy? |
|
|
6 | (4) |
|
1.3 Basic Metrology Concepts |
|
|
10 | (4) |
|
1.3.1 Measurement Traceability |
|
|
10 | (1) |
|
1.3.2 Measurement Uncertainty |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.4 Scanning Probe Microscopy and Quantitative Measurements |
|
|
14 | (5) |
|
|
17 | (2) |
|
Chapter 2 Instrumentation Principles |
|
|
19 | (20) |
|
2.1 Few Components for a Price of a House? |
|
|
19 | (8) |
|
|
20 | (4) |
|
|
24 | (1) |
|
2.1.3 Interaction Sensing Element and Feedback Loop |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.1.5 Vibration Isolation |
|
|
26 | (1) |
|
|
27 | (12) |
|
2.2.1 More Accurate Instruments |
|
|
28 | (1) |
|
2.2.2 Larger Area Measurements |
|
|
29 | (2) |
|
2.2.3 Faster Measurements |
|
|
31 | (5) |
|
|
36 | (3) |
|
|
39 | (26) |
|
3.1 From Analog to Digital |
|
|
39 | (1) |
|
3.2 Data Acquisition Basics |
|
|
39 | (5) |
|
|
39 | (3) |
|
3.2.2 Feedback Loop Effects |
|
|
42 | (2) |
|
|
44 | (4) |
|
|
44 | (1) |
|
|
45 | (3) |
|
|
48 | (3) |
|
3.5 Mechanical and Thermal Drifts |
|
|
51 | (6) |
|
|
57 | (1) |
|
|
58 | (4) |
|
Example 3.1 Feedback Loop Effects |
|
|
59 | (1) |
|
Example 3.2 Drift Effects |
|
|
60 | (1) |
|
Example 3.3 Drift Estimation From Two Successive Measurements |
|
|
60 | (1) |
|
Example 3.4 Fast Axis Change Denoising Procedure |
|
|
61 | (1) |
|
Example 3.5 Irregular Data Handling |
|
|
61 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
61 | (1) |
|
|
62 | (3) |
|
|
63 | (2) |
|
Chapter 4 Basic Data Processing |
|
|
65 | (32) |
|
|
65 | (2) |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.3 Local Data Manipulation |
|
|
68 | (2) |
|
|
69 | (1) |
|
|
70 | (1) |
|
4.4 Global Data Manipulation |
|
|
70 | (14) |
|
4.4.1 Resampling and Interpolation |
|
|
71 | (4) |
|
4.4.2 Data Leveling and Background Extraction |
|
|
75 | (3) |
|
4.4.3 Fourier Transform Filtering |
|
|
78 | (1) |
|
|
79 | (5) |
|
4.5 Multiple Channel Operations |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (3) |
|
4.8 Other Freely Available Data Processing Software |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
4.9 Uncertainty Related to Data Processing |
|
|
90 | (1) |
|
|
91 | (3) |
|
|
93 | (1) |
|
Example 4.2 Data Synthesis |
|
|
93 | (1) |
|
|
93 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
94 | (1) |
|
|
94 | (3) |
|
|
95 | (1) |
|
|
95 | (2) |
|
Chapter 5 Dimensional Measurements |
|
|
97 | (54) |
|
5.1 The Easiest Measurement? |
|
|
97 | (1) |
|
5.2 Atomic Force Microscopy Principles |
|
|
98 | (7) |
|
|
100 | (1) |
|
|
101 | (4) |
|
5.3 Atomic Force Microscopy Dimensional Data Measurement and Evaluation |
|
|
105 | (12) |
|
5.3.1 Direct Dimensional Quantities |
|
|
105 | (1) |
|
5.3.2 Statistical Quantities |
|
|
106 | (10) |
|
|
116 | (1) |
|
5.4 Atomic Force Microscopy and Quantitative Dimensional Metrology |
|
|
117 | (26) |
|
5.4.1 International Documentary Standards for Scanning Probe Microscopy |
|
|
118 | (2) |
|
5.4.2 Dimensional Calibrations by Scanning Probe Microscope |
|
|
120 | (1) |
|
5.4.3 Ensuring Traceability: Transfer Standards for Scanning Probe Microscopes |
|
|
121 | (3) |
|
5.4.4 Calibration of the Vertical Axis With Step Height Standards |
|
|
124 | (2) |
|
5.4.5 Calibration of the Two Lateral Axes With Lateral Standards |
|
|
126 | (1) |
|
5.4.6 Alternative Calibration of All Three Axes With 3D Pyramidal Standards |
|
|
127 | (1) |
|
5.4.7 Uncertainties in Dimensional Measurements |
|
|
128 | (3) |
|
5.4.8 Positioning System Systematic Errors |
|
|
131 | (1) |
|
5.4.9 Positioning System Short and Long Time Instability |
|
|
132 | (1) |
|
5.4.10 Tip-Sample Convolution Effects |
|
|
133 | (10) |
|
|
143 | (3) |
|
Example 5.1 Direct Dimensional Measurements |
|
|
144 | (1) |
|
Example 5.2 Roughness Parameters Evaluation |
|
|
144 | (1) |
|
Example 5.3 Tip Shape Estimation on Known Sample |
|
|
145 | (1) |
|
Example 5.4 Tip Shape Estimation on Unknown Sample |
|
|
145 | (1) |
|
Example 5.5 Data Synthesis and Tip Operations on It |
|
|
145 | (1) |
|
Example 5.6 Digital Image Correlation |
|
|
145 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
146 | (1) |
|
|
146 | (5) |
|
|
147 | (1) |
|
|
147 | (4) |
|
Chapter 6 Force and Mechanical Properties |
|
|
151 | (52) |
|
6.1 What About Forces in Force Microscopy? |
|
|
151 | (1) |
|
6.2 Forces and Force-Distance Curves |
|
|
152 | (15) |
|
6.2.1 Short-Range Repulsive Forces and Contact Theories |
|
|
155 | (6) |
|
6.2.2 Van der Waals Forces |
|
|
161 | (2) |
|
6.2.3 Electrostatic Forces |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
164 | (2) |
|
6.2.6 Forces in Biological Measurements and in Liquids |
|
|
166 | (1) |
|
6.3 Force Interaction Modeling |
|
|
167 | (9) |
|
6.3.1 Quantum Nanoscale Modeling |
|
|
168 | (4) |
|
6.3.2 Classical Nanoscale Modeling |
|
|
172 | (2) |
|
6.3.3 Mesoscopic Modeling |
|
|
174 | (1) |
|
|
175 | (1) |
|
6.4 Quantitative Force Measurements |
|
|
176 | (11) |
|
6.4.1 Cantilever Stiffness Calibration |
|
|
177 | (6) |
|
6.4.2 Force Distance Curve Interpretation and Artifacts |
|
|
183 | (3) |
|
6.4.3 Alternative Approaches |
|
|
186 | (1) |
|
6.5 Local Mechanical and Material Properties Mapping |
|
|
187 | (7) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (5) |
|
|
194 | (3) |
|
Example 6.1 Force--Distance Curves |
|
|
196 | (1) |
|
Example 6.2 z-Modulation on a Nanocomposite Sample |
|
|
196 | (1) |
|
Example 6.3 Polymer Blend Local Mechanical Properties |
|
|
196 | (1) |
|
Example 6.4 Adhesion Signal Artefacts on Topography |
|
|
197 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
197 | (1) |
|
|
197 | (6) |
|
|
198 | (1) |
|
|
198 | (5) |
|
Chapter 7 Friction and Lateral Forces |
|
|
203 | (20) |
|
7.1 What Opposes the Tip Motion? |
|
|
203 | (1) |
|
|
204 | (5) |
|
|
209 | (1) |
|
7.4 Quantitative Friction Force Measurements |
|
|
209 | (8) |
|
7.4.1 Lateral Force Sensor Calibration |
|
|
210 | (5) |
|
7.4.2 Friction Force Measurements Data Artifacts |
|
|
215 | (2) |
|
|
217 | (1) |
|
7.5.1 Independent Friction Measurement |
|
|
217 | (1) |
|
7.5.2 Torsional Resonance Microscopy |
|
|
217 | (1) |
|
|
217 | (2) |
|
Example 7.1 Topography Artifacts |
|
|
218 | (1) |
|
Example 7.2 Wedge Sample Data |
|
|
218 | (1) |
|
Example 7.3 Atomic Resolution Friction |
|
|
219 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
219 | (1) |
|
|
219 | (4) |
|
|
220 | (1) |
|
|
220 | (3) |
|
Chapter 8 Electrostatic Fields |
|
|
223 | (22) |
|
8.1 What Is Above the Sample? See the Invisible! |
|
|
223 | (3) |
|
|
226 | (3) |
|
|
229 | (9) |
|
|
230 | (3) |
|
8.3.2 Quantitative Data Interpretation |
|
|
233 | (5) |
|
|
238 | (2) |
|
|
239 | (1) |
|
|
239 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
239 | (1) |
|
|
240 | (5) |
|
|
240 | (1) |
|
|
241 | (4) |
|
Chapter 9 Magnetic Fields |
|
|
245 | (20) |
|
9.1 Magnetic Field Measurements |
|
|
245 | (15) |
|
|
246 | (4) |
|
|
250 | (1) |
|
|
250 | (5) |
|
9.1.4 Data Interpretation |
|
|
255 | (5) |
|
|
260 | (1) |
|
Example 9.1 MFM on a Hard Disc |
|
|
260 | (1) |
|
Example 9.2 Perpendicular Domains Stray Field |
|
|
260 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
261 | (1) |
|
|
261 | (4) |
|
|
261 | (1) |
|
|
261 | (4) |
|
Chapter 10 Local Current Measurements |
|
|
265 | (38) |
|
10.1 Where It All Started |
|
|
265 | (2) |
|
10.2 Tip-Sample Junction Models |
|
|
267 | (3) |
|
10.3 Scanning Tunneling Microscopy and Related Methods |
|
|
270 | (6) |
|
10.3.1 Interaction Models |
|
|
270 | (3) |
|
10.3.2 Numerical Modeling |
|
|
273 | (1) |
|
|
274 | (1) |
|
10.3.4 Data Interpretation |
|
|
274 | (2) |
|
10.4 Conductive Atomic Force Microscopy |
|
|
276 | (14) |
|
|
277 | (2) |
|
10.4.2 Numerical Modeling |
|
|
279 | (1) |
|
|
280 | (1) |
|
10.4.4 Data Interpretation |
|
|
281 | (9) |
|
10.5 Piezoresponse Force Microscopy |
|
|
290 | (3) |
|
10.6 Scanning Electrochemical Microscopy |
|
|
293 | (3) |
|
|
296 | (2) |
|
|
297 | (1) |
|
Example 10.2 Piezoresponse Data |
|
|
297 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
297 | (1) |
|
|
298 | (5) |
|
|
298 | (1) |
|
|
299 | (4) |
|
Chapter 11 Thermal Measurements |
|
|
303 | (30) |
|
|
303 | (2) |
|
11.2 Nano- and Microscale Heat Flow |
|
|
305 | (13) |
|
11.2.1 Conduction in Solids |
|
|
305 | (2) |
|
11.2.2 Convection and Conduction in Fluids |
|
|
307 | (1) |
|
|
308 | (1) |
|
11.2.4 Heat Sources in Scanning Probe Microscope |
|
|
309 | (1) |
|
11.2.5 Tip-Sample Heat Transfer Basics |
|
|
310 | (4) |
|
11.2.6 Numerical Modeling Approaches |
|
|
314 | (4) |
|
|
318 | (3) |
|
11.3.1 Commercially Available Techniques |
|
|
318 | (2) |
|
11.3.2 Other Experimental Approaches Under Development |
|
|
320 | (1) |
|
|
321 | (7) |
|
11.4.1 Artifacts Treatment |
|
|
324 | (4) |
|
|
328 | (2) |
|
Example 11.1 Delaminated Thin Film in Thermal Conductivity Contrast Mode |
|
|
328 | (1) |
|
Example 11.2 Gas Sensor Heater in Temperature Contrast Mode |
|
|
328 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
330 | (3) |
|
|
331 | (2) |
|
Chapter 12 Optical Measurements |
|
|
333 | (36) |
|
12.1 Have a Look at Nanoscale |
|
|
333 | (1) |
|
12.2 Fundamental Phenomena |
|
|
334 | (2) |
|
|
336 | (4) |
|
|
337 | (1) |
|
12.3.2 Apertureless SNOM, TERS, and Infrared Spectroscopy |
|
|
338 | (2) |
|
|
340 | (5) |
|
12.4.1 Classical Electrodynamics |
|
|
340 | (1) |
|
12.4.2 Finite Difference in Time Domain Modeling |
|
|
341 | (4) |
|
12.5 Quantitative Measurements |
|
|
345 | (18) |
|
12.5.1 Instrument Calibration |
|
|
345 | (1) |
|
12.5.2 Apertureless SNOM, TERS, and Infrared SNOM |
|
|
346 | (2) |
|
|
348 | (9) |
|
12.5.4 Quantitative Data Interpretation: Image Modeling |
|
|
357 | (4) |
|
|
361 | (1) |
|
Example 12.1 Aperture SNOM Data on a Standard Sample |
|
|
362 | (1) |
|
Example 12.2 Aperture SNOM Data on a Delamination |
|
|
362 | (1) |
|
What Might Come to the Uncertainty Budget |
|
|
362 | (1) |
|
|
363 | (6) |
|
|
364 | (1) |
|
|
365 | (4) |
|
Chapter 13 Sample Data Files |
|
|
369 | (4) |
|
13.1 Basics and Dimensional Measurements |
|
|
370 | (1) |
|
13.2 Forces and Mechanical Properties |
|
|
371 | (1) |
|
13.3 Electric and Magnetic Properties |
|
|
372 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
Chapter 14 Numerical Modeling Techniques |
|
|
373 | (20) |
|
14.1 Density Functional Theory |
|
|
374 | (3) |
|
Example 14.1 Quantum Espresso |
|
|
376 | (1) |
|
|
377 | (1) |
|
14.2 Classical Molecular Dynamics |
|
|
377 | (4) |
|
|
381 | (1) |
|
|
381 | (1) |
|
14.3 Dislocation Dynamics |
|
|
381 | (4) |
|
|
384 | (1) |
|
|
385 | (1) |
|
14.4 Finite Difference Method |
|
|
385 | (3) |
|
|
387 | (1) |
|
14.5 Finite Element Method |
|
|
388 | (1) |
|
Example 14.5 Elmer and SfePy |
|
|
388 | (1) |
|
|
388 | (1) |
|
14.6 Finite Difference in Time Domain Method |
|
|
389 | (4) |
|
|
392 | (1) |
|
|
393 | (1) |
References |
|
393 | |