Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology

(Czech Metrology Institute)
  • Formāts: PDF+DRM
  • Sērija : Micro & Nano Technologies
  • Izdošanas datums: 03-Feb-2018
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128133484
  • Formāts - PDF+DRM
  • Cena: 230,11 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Micro & Nano Technologies
  • Izdošanas datums: 03-Feb-2018
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128133484

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology, Second Edition describes the recommended practices for measurements and data processing for various SPM techniques, also discussing associated numerical techniques and recommendations for further reading for particular physical quantities measurements. Each chapter has been revised and updated for this new edition to reflect the progress that has been made in SPM techniques in recent years. New features for this edition include more step-by-step examples, better sample data and more links to related documentation in open source software.

Scanning Probe Microscopy (SPM) techniques have the potential to produce information on various local physical properties. Unfortunately, there is still a large gap between what is measured by commercial devices and what could be considered as a quantitative result. This book determines to educate and close that gap.

  • Features step-by-step guidance to aid readers in progressing from a general understanding of SPM principles to a greater mastery of complex data measurement techniques
  • Includes a focus on metrology aspects of measurements, arming readers with a solid grasp of instrumentation and measuring methods accuracy
  • Worked examples show quantitative data processing for different SPM analytical techniques
Chapter 1 Motivation
1(18)
1.1 Why "Quantitative" Scanning Probe Microscopy?
1(5)
1.1.1 Book Organization
2(2)
1.1.2 Available Numerical Techniques
4(2)
1.2 What Is Scanning Probe Microscopy?
6(4)
1.3 Basic Metrology Concepts
10(4)
1.3.1 Measurement Traceability
10(1)
1.3.2 Measurement Uncertainty
11(2)
1.3.3 Uncertainty Budget
13(1)
1.4 Scanning Probe Microscopy and Quantitative Measurements
14(5)
References
17(2)
Chapter 2 Instrumentation Principles
19(20)
2.1 Few Components for a Price of a House?
19(8)
2.1.1 Scanner
20(4)
2.1.2 Probe
24(1)
2.1.3 Interaction Sensing Element and Feedback Loop
25(1)
2.1.4 Electronics
25(1)
2.1.5 Vibration Isolation
26(1)
2.2 Novel Approaches
27(12)
2.2.1 More Accurate Instruments
28(1)
2.2.2 Larger Area Measurements
29(2)
2.2.3 Faster Measurements
31(5)
References
36(3)
Chapter 3 Data Models
39(26)
3.1 From Analog to Digital
39(1)
3.2 Data Acquisition Basics
39(5)
3.2.1 Data Sampling
39(3)
3.2.2 Feedback Loop Effects
42(2)
3.3 Image Sampling
44(4)
3.3.1 Regular Sampling
44(1)
3.3.2 Irregular Sampling
45(3)
3.4 Data Storage
48(3)
3.5 Mechanical and Thermal Drifts
51(6)
3.6 Noise
57(1)
3.7 Try It Yourself
58(4)
Example 3.1 Feedback Loop Effects
59(1)
Example 3.2 Drift Effects
60(1)
Example 3.3 Drift Estimation From Two Successive Measurements
60(1)
Example 3.4 Fast Axis Change Denoising Procedure
61(1)
Example 3.5 Irregular Data Handling
61(1)
What Might Come to the Uncertainty Budget
61(1)
3.8 Tips and Tricks
62(3)
References
63(2)
Chapter 4 Basic Data Processing
65(32)
4.1 A Daily Bread?
65(2)
4.1.1 Gwyddion
66(1)
4.2 Data Visualization
67(1)
4.3 Local Data Manipulation
68(2)
4.3.1 Outliers
69(1)
4.3.2 Scars
70(1)
4.4 Global Data Manipulation
70(14)
4.4.1 Resampling and Interpolation
71(4)
4.4.2 Data Leveling and Background Extraction
75(3)
4.4.3 Fourier Transform Filtering
78(1)
4.4.4 Wavelet Filtering
79(5)
4.5 Multiple Channel Operations
84(1)
4.6 Scripting
85(1)
4.7 Data Generation
86(3)
4.8 Other Freely Available Data Processing Software
89(1)
4.8.1 GXSM
90(1)
4.8.2 WSxM
90(1)
4.9 Uncertainty Related to Data Processing
90(1)
4.10 Try It Yourself
91(3)
Example 4.1 Leveling
93(1)
Example 4.2 Data Synthesis
93(1)
Example 4.3 Scripting
93(1)
What Might Come to the Uncertainty Budget
94(1)
4.11 Tips and Tricks
94(3)
Read More
95(1)
References
95(2)
Chapter 5 Dimensional Measurements
97(54)
5.1 The Easiest Measurement?
97(1)
5.2 Atomic Force Microscopy Principles
98(7)
5.2.1 Contact Mode
100(1)
5.2.2 Dynamic Modes
101(4)
5.3 Atomic Force Microscopy Dimensional Data Measurement and Evaluation
105(12)
5.3.1 Direct Dimensional Quantities
105(1)
5.3.2 Statistical Quantities
106(10)
5.3.3 Cross-Correlation
116(1)
5.4 Atomic Force Microscopy and Quantitative Dimensional Metrology
117(26)
5.4.1 International Documentary Standards for Scanning Probe Microscopy
118(2)
5.4.2 Dimensional Calibrations by Scanning Probe Microscope
120(1)
5.4.3 Ensuring Traceability: Transfer Standards for Scanning Probe Microscopes
121(3)
5.4.4 Calibration of the Vertical Axis With Step Height Standards
124(2)
5.4.5 Calibration of the Two Lateral Axes With Lateral Standards
126(1)
5.4.6 Alternative Calibration of All Three Axes With 3D Pyramidal Standards
127(1)
5.4.7 Uncertainties in Dimensional Measurements
128(3)
5.4.8 Positioning System Systematic Errors
131(1)
5.4.9 Positioning System Short and Long Time Instability
132(1)
5.4.10 Tip-Sample Convolution Effects
133(10)
5.5 Try It Yourself
143(3)
Example 5.1 Direct Dimensional Measurements
144(1)
Example 5.2 Roughness Parameters Evaluation
144(1)
Example 5.3 Tip Shape Estimation on Known Sample
145(1)
Example 5.4 Tip Shape Estimation on Unknown Sample
145(1)
Example 5.5 Data Synthesis and Tip Operations on It
145(1)
Example 5.6 Digital Image Correlation
145(1)
What Might Come to the Uncertainty Budget
146(1)
5.6 Tips and Tricks
146(5)
Read More
147(1)
References
147(4)
Chapter 6 Force and Mechanical Properties
151(52)
6.1 What About Forces in Force Microscopy?
151(1)
6.2 Forces and Force-Distance Curves
152(15)
6.2.1 Short-Range Repulsive Forces and Contact Theories
155(6)
6.2.2 Van der Waals Forces
161(2)
6.2.3 Electrostatic Forces
163(1)
6.2.4 Magnetic Forces
164(1)
6.2.5 Capillary Forces
164(2)
6.2.6 Forces in Biological Measurements and in Liquids
166(1)
6.3 Force Interaction Modeling
167(9)
6.3.1 Quantum Nanoscale Modeling
168(4)
6.3.2 Classical Nanoscale Modeling
172(2)
6.3.3 Mesoscopic Modeling
174(1)
6.3.4 Continuum Modeling
175(1)
6.4 Quantitative Force Measurements
176(11)
6.4.1 Cantilever Stiffness Calibration
177(6)
6.4.2 Force Distance Curve Interpretation and Artifacts
183(3)
6.4.3 Alternative Approaches
186(1)
6.5 Local Mechanical and Material Properties Mapping
187(7)
6.5.1 Z Modulation
188(1)
6.5.2 Phase Imaging
189(1)
6.5.3 Special Modes
189(5)
6.6 Try It Yourself
194(3)
Example 6.1 Force--Distance Curves
196(1)
Example 6.2 z-Modulation on a Nanocomposite Sample
196(1)
Example 6.3 Polymer Blend Local Mechanical Properties
196(1)
Example 6.4 Adhesion Signal Artefacts on Topography
197(1)
What Might Come to the Uncertainty Budget
197(1)
6.7 Tips and Tricks
197(6)
Read More
198(1)
References
198(5)
Chapter 7 Friction and Lateral Forces
203(20)
7.1 What Opposes the Tip Motion?
203(1)
7.2 Friction Forces
204(5)
7.3 Force Modeling
209(1)
7.4 Quantitative Friction Force Measurements
209(8)
7.4.1 Lateral Force Sensor Calibration
210(5)
7.4.2 Friction Force Measurements Data Artifacts
215(2)
7.5 Special Modes
217(1)
7.5.1 Independent Friction Measurement
217(1)
7.5.2 Torsional Resonance Microscopy
217(1)
7.6 Try It Yourself
217(2)
Example 7.1 Topography Artifacts
218(1)
Example 7.2 Wedge Sample Data
218(1)
Example 7.3 Atomic Resolution Friction
219(1)
What Might Come to the Uncertainty Budget
219(1)
7.7 Tips and Tricks
219(4)
Read More
220(1)
References
220(3)
Chapter 8 Electrostatic Fields
223(22)
8.1 What Is Above the Sample? See the Invisible!
223(3)
8.2 Basic Relations
226(3)
8.3 Numerical Modeling
229(9)
8.3.1 Instrumentation
230(3)
8.3.2 Quantitative Data Interpretation
233(5)
8.4 Try It Yourself
238(2)
Example 8.1 EFM Data
239(1)
Example 8.2 KPFM Data
239(1)
What Might Come to the Uncertainty Budget
239(1)
8.5 Tips and Tricks
240(5)
Read More
240(1)
References
241(4)
Chapter 9 Magnetic Fields
245(20)
9.1 Magnetic Field Measurements
245(15)
9.1.1 Basic Relations
246(4)
9.1.2 Modeling
250(1)
9.1.3 Instrumentation
250(5)
9.1.4 Data Interpretation
255(5)
9.2 Try It Yourself
260(1)
Example 9.1 MFM on a Hard Disc
260(1)
Example 9.2 Perpendicular Domains Stray Field
260(1)
What Might Come to the Uncertainty Budget
261(1)
9.3 Tips and Tricks
261(4)
Read More
261(1)
References
261(4)
Chapter 10 Local Current Measurements
265(38)
10.1 Where It All Started
265(2)
10.2 Tip-Sample Junction Models
267(3)
10.3 Scanning Tunneling Microscopy and Related Methods
270(6)
10.3.1 Interaction Models
270(3)
10.3.2 Numerical Modeling
273(1)
10.3.3 Instrumentation
274(1)
10.3.4 Data Interpretation
274(2)
10.4 Conductive Atomic Force Microscopy
276(14)
10.4.1 Analytical Models
277(2)
10.4.2 Numerical Modeling
279(1)
10.4.3 Instrumentation
280(1)
10.4.4 Data Interpretation
281(9)
10.5 Piezoresponse Force Microscopy
290(3)
10.6 Scanning Electrochemical Microscopy
293(3)
10.7 Try It Yourself
296(2)
Example 10.1 C-AFM Data
297(1)
Example 10.2 Piezoresponse Data
297(1)
What Might Come to the Uncertainty Budget
297(1)
10.8 Tips and Tricks
298(5)
Read More
298(1)
References
299(4)
Chapter 11 Thermal Measurements
303(30)
11.1 Really a Hot Topic?
303(2)
11.2 Nano- and Microscale Heat Flow
305(13)
11.2.1 Conduction in Solids
305(2)
11.2.2 Convection and Conduction in Fluids
307(1)
11.2.3 Radiation
308(1)
11.2.4 Heat Sources in Scanning Probe Microscope
309(1)
11.2.5 Tip-Sample Heat Transfer Basics
310(4)
11.2.6 Numerical Modeling Approaches
314(4)
11.3 Instrumentation
318(3)
11.3.1 Commercially Available Techniques
318(2)
11.3.2 Other Experimental Approaches Under Development
320(1)
11.4 Data Interpretation
321(7)
11.4.1 Artifacts Treatment
324(4)
11.5 Try It Yourself
328(2)
Example 11.1 Delaminated Thin Film in Thermal Conductivity Contrast Mode
328(1)
Example 11.2 Gas Sensor Heater in Temperature Contrast Mode
328(1)
What Might Come to the Uncertainty Budget
328(2)
Read More
330(1)
11.6 Tips and Tricks
330(3)
References
331(2)
Chapter 12 Optical Measurements
333(36)
12.1 Have a Look at Nanoscale
333(1)
12.2 Fundamental Phenomena
334(2)
12.3 Basic Techniques
336(4)
12.3.1 Aperture SNOM
337(1)
12.3.2 Apertureless SNOM, TERS, and Infrared Spectroscopy
338(2)
12.4 Numerical Analysis
340(5)
12.4.1 Classical Electrodynamics
340(1)
12.4.2 Finite Difference in Time Domain Modeling
341(4)
12.5 Quantitative Measurements
345(18)
12.5.1 Instrument Calibration
345(1)
12.5.2 Apertureless SNOM, TERS, and Infrared SNOM
346(2)
12.5.3 Aperture SNOM
348(9)
12.5.4 Quantitative Data Interpretation: Image Modeling
357(4)
12.5.5 Try It Yourself
361(1)
Example 12.1 Aperture SNOM Data on a Standard Sample
362(1)
Example 12.2 Aperture SNOM Data on a Delamination
362(1)
What Might Come to the Uncertainty Budget
362(1)
12.6 Tips and Tricks
363(6)
Read More
364(1)
References
365(4)
Chapter 13 Sample Data Files
369(4)
13.1 Basics and Dimensional Measurements
370(1)
13.2 Forces and Mechanical Properties
371(1)
13.3 Electric and Magnetic Properties
372(1)
13.4 Thermal Properties
372(1)
13.5 Optical Properties
372(1)
Chapter 14 Numerical Modeling Techniques
373(20)
14.1 Density Functional Theory
374(3)
Example 14.1 Quantum Espresso
376(1)
Other Packages
377(1)
14.2 Classical Molecular Dynamics
377(4)
Example 14.2 LAMMPS
381(1)
Other Packages
381(1)
14.3 Dislocation Dynamics
381(4)
Example 14.3 microMegas
384(1)
Other Packages
385(1)
14.4 Finite Difference Method
385(3)
Example 14.4 OOMMF
387(1)
14.5 Finite Element Method
388(1)
Example 14.5 Elmer and SfePy
388(1)
Other Packages
388(1)
14.6 Finite Difference in Time Domain Method
389(4)
Example 14.6 Gsvit
392(1)
Other Packages
393(1)
References 393
Petr Klapetek is Head, Department of Nanometrology at the Czech Metrology Institute, Czech Republic. His research focuses on the metrology scanning probe microscope (SPM) construction, a key standard for nanometrology.He also participates in the Gwyddion project, focused on the creation of multiplatform open-source software for scanning probe microscopy (SPM) data analysis.