Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantitative Decisions in Drug Development

  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a high-level treatise of evidence-based decisions in drug development. Because of the inseparable relationship between designs and decisions, a good portion of this book is devoted to the design of clinical trials. The book begins with an overview of product development and regulatory approval pathways. It then discusses how to incorporate prior knowledge into study design and decision making at different stages of drug development. The latter include selecting appropriate metrics to formulate decisions criteria, determining go/no-go decisions for progressing a drug candidate to the next stage and predicting the effectiveness of a product. Lastly, it points out common mistakes made by drug developers under the current drug-development paradigm.

The book offers useful insights to statisticians, clinicians, regulatory affairs managers and decision-makers in the pharmaceutical industry who have a basic understanding of the drug-development process and the clinical trials conducted to support drug-marketing authorization.





The authors provide software codes for select analytical approaches discussed in the book. The book includes enough technical details to allow statisticians to replicate the quantitative illustrations so that they can generate information to facilitate decision-making themselves.

Recenzijas

This work offers useful algorithms, classifications, and other general points to statisticians or quantitative scientists. But, it is also really useful to regulatory affairs managers, clinicians, medical writers, and all kinds of decision-makers in the industry. (Andrei Myslivets, ISCB News, Vol. 68, December, 2019) It is presented in a concise, structured, friendly, and illustrative way that allows for a good understanding of the underlying ideas . the book from Chuang-Stein and Kirby is a valuable, interesting and easy read for statisticians and clinicians with some methodological background who are involved in clinical development or drug approval and who are looking for a structured way to make clinical development decisions. (Norbert Benda, Biometrical Journal, Vol. 61 (4), July, 2016)

Clinical Testing of a New Drug.- A Frequentist Decision-making
Framework.- Characteristics of a Diagnostic Test.- The Parallel Between
Clinical Trials and Diagnostic Tests.- Incorporating Information from
Completed Trials in Future Trial Planning.- Choosing Metrics Appropriate for
Different Stages of Drug Development.- Designing Proof-of-Concept Trials with
Desired Characteristics.- Designing Dose-response Studies with Desired
Characteristics.- Designing Confirmatory Trials with Desired
Characteristics.- Designing Phase 4 Trials.- Other Metrics That Have Been
Proposed to Optimize Drug Development Decisions.- Discounting Prior Results
to Account for Selection Bias.- Index.- Appendix.
Christy Chuang-Stein was Vice President and Head of the Statistical Research and Consulting Center at Pfizer prior to retirement from the company in July 2015. She has more than 30 years of experience in the pharmaceutical industry and 160 scientific publications. She is a Fellow of the American Statistical Association (ASA) and received ASAs Founders Award in 2012. She was the recipient of the Distinguished Achievement Award of the International Chinese Statistical Association in 2013.







Simon Kirby is Senior Director at the Statistical Research and Consulting Center at Pfizer. He has worked for Pfizer for more than 17 years after previously holding the position of Principal Lecturer in Statistics at Liverpool John Moores University. He has also previously worked as a Statistician at the Institute of Food Research in the UK, Rothamsted and Revlon Healthcare.