Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Chemical Approach for Organic Ferromagnetic Material Design

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Molecular Science
  • Izdošanas datums: 20-Dec-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319498294
  • Formāts - PDF+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Molecular Science
  • Izdošanas datums: 20-Dec-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319498294

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This brief provides an overview of theoretical research in organic ferromagnetic material design using quantum chemical approaches based on molecular orbital theory from primary Hückel to ab initio levels of theory. Most of the content describes the authors" approach to identify simple and efficient guidelines for magnetic design, which have not been described in other books. Individual chapters cover quantum chemistry methods that may be used to find hydrocarbon systems with degenerate non-bonding molecular orbitals that interact with each other, to identify high-spin-preferred systems using an analytical index that allows for simple design of high-spin systems as well as to analyze the effect of high-spin stability through orbital interactions. The extension of these methods to large systems is discussed. This book is a valuable resource for students and researchers who are interested in quantum chemistry related to magnetic property.
1 Survey of Organic Magnetism
1(30)
1.1 Overview
1(3)
1.1.1 Ferromagnetism
1(1)
1.1.2 Paramagnetism and Diamagnetism
2(1)
1.1.3 Effect of Temperature on Magnetism
3(1)
1.2 Why Organic Ferromagnetism?
4(3)
1.2.1 Inorganic Magnets
4(1)
1.2.2 Advantages and Potential Applications of Organic Magnets
5(2)
1.3 Development of the Disjoint and Non-disjoint Concepts in Organic Systems
7(3)
1.3.1 Alternant and Non-alternant Hydrocarbons
8(1)
1.3.2 Kekule and Non-Kekule Molecules
9(1)
1.4 Index for Finding High-Spin State
10(2)
1.4.1 Molecular-Orbital-Based Index
10(2)
1.4.2 Valence-Bond-Theory-Based Index
12(1)
1.5 Strategy for Ferromagnetism
12(2)
1.5.1 Approach to Radical Crystals
13(1)
1.5.2 Approach to Radical Polymers
14(1)
1.6 Ising Model: Theoretical Approaches to Large High-Spin Systems (I)
14(2)
1.7 Quantum Chemistry Approach: Theoretical Approaches to Large High-Spin Systems (II)
16(15)
1.7.1 Open-Shell Ab Initio Molecular Orbital Methods for Larger Systems
17(2)
References
19(12)
2 Nonbonding Molecular Orbital Method and Mathematical Proof for Disjoint/Non-disjoint Molecules
31(30)
2.1 Introduction
31(2)
2.2 Atomic-Orbital-Based Proof for Disjoint and Non-disjoint Hydrocarbons
33(4)
2.2.1 Hydrocarbons Disjoint (HC-AO-D)
34(2)
2.2.2 Non-disjoint Hydrocarbons Non-disjoint (HC-AO-N)
36(1)
2.3 Molecular-Orbital-Based Proof for Disjoint and Non-disjoint Hydrocarbons
37(8)
2.3.1 Hydrocarbons Disjoint (HC-MO-D)
39(1)
2.3.2 Hydrocarbons Non-disjoint (HC-MO-N)
40(5)
2.4 Atomic-Orbital-Based Proof for Disjoint and Non-disjoint Heteroatom-Included Hydrocarbons
45(8)
2.4.1 Heteroatom-Included Hydrocarbon Type-I Disjoint (HHC-AO-I-D)
48(1)
2.4.2 Heteroatom-Included Hydrocarbon Type-I Non-disjoint (HHC-AO-I-N)
49(1)
2.4.3 Heteroatom-Included Hydrocarbon Type-II Disjoint (HHC-AO-II-D)
50(1)
2.4.4 Heteroatom-Included Hydrocarbons Type-II Non-disjoint (HHC-AO-II-N)
51(2)
2.5 Molecular-Orbital-Based Proof for Disjoint and Non-disjoint Heteroatom-Included Hydrocarbons
53(8)
2.5.1 Heteroatom-Included Hydrocarbons Type-I Disjoint (HHC-MO-I-D)
53(4)
2.5.2 Heteroatom-Included Hydrocarbons Type-I Non-disjoint (HHC-MO-I-N)
57(1)
2.5.3 Heteroatom-Included Hydrocarbons Type-II Disjoint (HHC-MO-n-D)
58(1)
2.5.4 Heteroatom-Included Hydrocarbons Type-II Non-disjoint (HHC-MO-B-N)
59(1)
References
59(2)
3 Simple High-Spin Index Lij for Ferromagnetic Organic Molecules
61(40)
3.1 Introduction
61(1)
3.2 High-Spin Stability Index Lij (Computational Approach)
62(14)
3.2.1 Lij for Diradical Systems
62(5)
3.2.2 Lij for Polyradical System
67(1)
3.2.3 Alternate Explanation of Lij
68(3)
3.2.4 Effects of Electron Correlation on High-Spin Stability
71(2)
3.2.5 Comparison Between Lminij and Ab Initio MP2 Calculations
73(3)
3.3 Analytical Approach to Lij
76(22)
3.3.1 Closed and Open Non-disjoint (0--*) Linkages
76(1)
3.3.2 Closed (0--*) Linkage: Benzyl Radical Dimer (Diradical Model)
77(1)
3.3.3 Closed (0--*) Linkage: Benzyl Radical Trimer (Triradical Model)
78(3)
3.3.4 Closed (0--*) Linkage: Benzyl Radical Pentamer (Pentaradical Model)
81(1)
3.3.5 Closed (0--*) Linkage: Tetraradical Model Including Methylene and Methylidyne Radical Units
82(1)
3.3.6 General Procedures for the Analytical Prediction of Lij for Closed (0--*) Linkage Models
83(2)
3.3.7 Analytical Prediction of Lij for Quasi-One-Dimensional Closed (0--*) Benzyl Radical Systems
85(6)
3.3.8 Comparison Between LAPij and Direct Quantum Chemistry Calculations for Quasi-One-Dimensional Closed (0--*) Benzyl Radical Systems
91(4)
3.3.9 Analytical Prediction of Lij for Open Non-disjoint (0--*) Benzyl Radical Systems
95(3)
3.4 (2 × 2) Unitary Rotation for Minimizing Lij and Its Comparison with the Edmiston--Rudenberg Method
98(3)
References
99(2)
4 Through-Space/Bond Interaction Analysis of Ferromagnetic Interactions
101(20)
4.1 Introduction
101(1)
4.2 Ab Initio Through-Space/Bond Interaction Analysis Method
102(6)
4.2.1 How to Analyze Orbital Interactions Using the Through-Space/Bond Method
102(2)
4.2.2 Procedures for the Through-Space/Bond Interaction Analysis Method
104(2)
4.2.3 Features of the Through-Space/Bond Interaction Analysis Method
106(2)
4.3 Analysis of Inter-radical Interactions Using the Through-Space/Bond Method
108(13)
4.3.1 Through-Space/Bond Analysis of a Non-disjoint (0--*) Benzyl Radical Dimer
108(8)
4.3.2 Spacer Size and Number of Radicals: Effects on High-Spin Stability
116(3)
References
119(2)
5 O(N) Ab Initio Open-Shell MMELG-PCM Method and Its Application to Radical Polymers
121(16)
5.1 Introduction
121(3)
5.2 Method
124(4)
5.2.1 Elongation Method for Closed-Shell Systems
124(1)
5.2.2 Open-Shell Elongation Method with Polarizable Continuum Model
125(2)
5.2.3 Minimized Mixing Molecular Orbital Localization and Minimized Mixing Elongation Methods
127(1)
5.3 Applications and Comparison with the Conventional Method
128(9)
5.3.1 Application of the Open-Shell Elongation Method
128(1)
5.3.2 Application of the Minimized Mixing Elongation Method
129(2)
5.3.3 Application of the Minimized Mixing Elongation-Polarizable Continuum Model Method
131(2)
5.3.4 Application of the Minimized Mixing Elongation Method to a Dendrimer Model
133(1)
References
134(3)
6 Conclusions and Future Prospects
137
Yuriko Aoki is a Professor at the Department of Energy and Material Sciences, Kyushu University (Japan). She is also a guest professor at the South China Normal University, Guangzhou, China. Prof. Aoki published more than 140 scientific articles in peer-reviewed journals and contributed to several books. Her current research focuses on the application of highly accurate order-N computational method for gigantic systems and on the material design for nano-bio systems. Yuuichi Orimoto is working as an Assistant Professor at the Green Asia education center, Kyushu University (Japan), after several postdoctoral stages and defending his PhD in Chemistry at Hiroshima University in 2003.  Akira Imamura was born in 1934, Shiga Prefecture, Japan. After his retirement as Professor of Physical Chemistry from Hiroshima University, he was involved in educational and administrational issues at Hiroshima Kokusai Gakuin University. Professor Imamura has been a pioneering researcher in the development and application of quantum mechanical methods for large systems. Initially, he developed semiempirical methods for analysis of organic molecule and large bio-systems and extended them in collaboration with other scientists, especially in molecular biophysics field.