Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Chemistry in the Age of Machine Learning

Edited by (Pavlo O. Dral is Full Professor at Xiamen University, PR China.)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-Sep-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323886048
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 223,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 16-Sep-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323886048
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning.

Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field.

  • Compiles advances of machine learning in quantum chemistry across different areas into a single resource
  • Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry
  • Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry
1. Very brief introduction to quantum chemistry
2. Density functional theory
3. Semiempirical quantum mechanical methods
4. From small molecules to solid-state materials: A brief discourse on an example of carbon compounds
5. Basics of dynamics
6. Machine learning: An overview
7. Unsupervised learning
8. Neural networks
9. Kernel methods
10. Bayesian inference
11. Potentials based on linear models
12. Neural network potentials
13. Kernel method potentials
14. Constructing machine learning potentials with active learning
15. Excited-state dynamics with machine learning
16. Machine learning for vibrational spectroscopy
17. Molecular structure optimizations with Gaussian process regression
18. Learning electron densities
19. Learning dipole moments and polarizabilities
20. Learning excited-state properties
21. Learning from multiple quantum chemical methods: ?-learning, transfer learning, co-kriging, and beyond
22. Data-driven acceleration of coupled-cluster and perturbation theory methods
23. Redesigning density functional theory with machine learning
24. Improving semiempirical quantum mechanical methods with machine learning
25. Machine learning wavefunction
26. Analysis of nonadiabatic molecular dynamics trajectories
27. Design of organic materials with tailored optical properties: Predicting quantum-chemical polarizabilities and derived Quantities
Pavlo O. Dral is Full Professor at Xiamen University. He is a specialist in accelerating and improving quantum chemistry with artificial intelligence/machine learning. Together with his colleagues, he introduced and continues to develop methods such as -learning, AIQM1, fourdimensional spacetime atomistic artificial intelligence models, and artificial intelligence-based quantum dynamics. Pavlo Dral is also a founder of MLatom, a program package for atomistic machine learning, and a co-founder of the Xiamen Atomistic Computing Suite. His more than 40 publications were cited over 2800 times and his h-index is 22 (Google Scholar, Summer 2022). Pavlo O. Dral has won a gold medal in the 36th International Chemistry Olympiad, 2004. He did his PhD with Prof. Tim Clark at the University of ErlangenNuremberg in 20102013, postdoc with Prof. Walter Thiel at the Max Planck Institute for Coal Research in 20132019, and began his independent career at Xiamen University in 2019 first as an Associate Professor and from 2021 as a Full Professor. More information is available on Drals group website dr-dral.com.