|
|
xix | |
Preface |
|
xxiii | |
|
1 Motivation and Basic Concepts |
|
|
1 | (12) |
|
|
|
|
|
1.1 Mission and Motivation |
|
|
1 | (3) |
|
|
4 | (1) |
|
1.3 The Molecular Hamiltonian |
|
|
5 | (1) |
|
1.4 Dirac or Bra-Ket Notation |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.6 Second Quantization Formalism |
|
|
7 | (2) |
|
1.7 Born-Oppenheimer Approximation and Potential Energy Surfaces |
|
|
9 | (1) |
|
1.8 Adiabatic Versus Diabatic Representations |
|
|
10 | (1) |
|
1.9 Conical Intersections |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (342) |
|
2 Time-Dependent Density Functional Theory |
|
|
15 | (17) |
|
|
|
|
|
15 | (1) |
|
|
16 | (6) |
|
2.2.1 The Runge-Gross Theorems |
|
|
16 | (2) |
|
2.2.2 The Time-Dependent Kohn-Sham Approach |
|
|
18 | (1) |
|
2.2.3 Solutions of Time-Dependent Kohn-Sham Equations |
|
|
19 | (1) |
|
|
19 | (1) |
|
2.2.3 Linear-Response TDDFT |
|
|
20 | (2) |
|
2.3 Linear-Response TDDFT in Action |
|
|
22 | (10) |
|
2.3.1 Vertical Excitations and Energy Surfaces |
|
|
22 | (1) |
|
2.3.1 Vertical Excitations: How Good are They? |
|
|
23 | (2) |
|
2.3.1 Reconstructed Energy Surfaces: How Good are They? |
|
|
25 | (3) |
|
2.3.2 Conical Intersections |
|
|
28 | (2) |
|
2.3.3 Coupling Terms and Auxiliary Wave Functions |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.3.3 Time-Derivative Non-Adiabatic Couplings |
|
|
31 | (1) |
|
23 A Non-Adiabatic Dynamics |
|
|
32 | (15) |
|
2.4 Excited States and Dynamics with TDDFT Variants and Beyond |
|
|
34 | (1) |
|
|
35 | (12) |
|
|
36 | (1) |
|
|
36 | (11) |
|
3 Multi-Configurational Density Functional Theory: Progress and Challenges |
|
|
47 | (30) |
|
|
|
47 | (3) |
|
|
50 | (1) |
|
3.3 Kohn-Sham Density Functional Theory |
|
|
50 | (7) |
|
3.3.1 Density Functional Approximations |
|
|
53 | (1) |
|
3.3.2 Density Functional Theory for Excited States |
|
|
54 | (1) |
|
3.3.2 Issues Within the Time-Dependent Density Functional Theory Ansatz |
|
|
55 | (1) |
|
3.3.2 Self-Interaction Error |
|
|
55 | (1) |
|
3.3.2 Degeneracies, Near-Degeneracies and the Symmetry Dilemma |
|
|
56 | (1) |
|
3.4 Multi-Configurational Density Functional Theory |
|
|
57 | (7) |
|
3.4.1 Semi-Empirical Multi-Configurational Density Functional Theory |
|
|
57 | (1) |
|
3.4.2 Multi-Configurational Density Functional Theory Based the On-Top Pair Density |
|
|
58 | (1) |
|
3.4.2 Density Matrices and the On-Top Pair Density |
|
|
59 | (1) |
|
3.4.2 Energy Functional and Excited States with the On-Top Pair Density |
|
|
60 | (1) |
|
3.4.3 Multi-Configurational Density Functional Theory Based on Range-Separation |
|
|
61 | (1) |
|
3.4.3 Energy Functional and Excited States in Range-Separated Methods |
|
|
62 | (1) |
|
3.4.3 The Range-Separation Parameter in Excited State Calculations |
|
|
62 | (2) |
|
3.5 Illustrative Examples |
|
|
64 | (2) |
|
3.5.1 Excited States of Organic Molecules |
|
|
64 | (1) |
|
3.5.2 Excited States for a Transition Metal Complex |
|
|
65 | (1) |
|
|
66 | (11) |
|
|
67 | (1) |
|
|
67 | (10) |
|
4 Equation-of-Motion Coupled-Cluster Models |
|
|
77 | (32) |
|
|
|
77 | (2) |
|
4.2 Theoretical Background |
|
|
79 | (5) |
|
4.2.1 Coupled-Cluster Wave Function |
|
|
79 | (1) |
|
4.2.2 The Equation-of-Motion Approach |
|
|
80 | (1) |
|
4.2.3 Similarity-Transformed Hamiltonian |
|
|
81 | (1) |
|
4.2.4 Davidson Diagonalization Algorithm |
|
|
82 | (2) |
|
4.3 Excited States: EE-EOM-CC |
|
|
84 | (5) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
87 | (2) |
|
4.4 Ionized States: IP-EOM-CC |
|
|
89 | (2) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.5 Electron-Attached States: EA-EOM-CC |
|
|
91 | (3) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
92 | (2) |
|
4.6 Doubly-Ionized States: DIP-EOM-CC |
|
|
94 | (3) |
|
|
95 | (1) |
|
4.6.2 DIP-EOM-CCSDT Model |
|
|
95 | (1) |
|
|
96 | (1) |
|
4.7 Doubly Electron-Attached States: DEA-EOM-CC |
|
|
97 | (3) |
|
|
98 | (1) |
|
4.7.2 DEA-EOM-CCSDT Model |
|
|
98 | (1) |
|
|
98 | (2) |
|
4.8 Size-Extensivity Issue in the EOM-CC Theory |
|
|
100 | (2) |
|
|
102 | (7) |
|
|
103 | (6) |
|
5 The Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator |
|
|
109 | (24) |
|
|
5.1 Original Derivation via Green's Functions |
|
|
110 | (2) |
|
5.2 The Intermediate State Representation |
|
|
112 | (2) |
|
5.3 Calculation of Excited State Properties and Analysis |
|
|
114 | (3) |
|
5.3.1 Excited State Properties |
|
|
114 | (2) |
|
5.3.2 Excited-State Wave Function and Density Analyses |
|
|
116 | (1) |
|
5.4 Properties and Limitations of ADC |
|
|
117 | (2) |
|
|
119 | (6) |
|
|
119 | (1) |
|
5.5.2 Unrestricted EE-ADC Schemes |
|
|
120 | (1) |
|
5.5.3 Spin-Flip EE-ADC Schemes |
|
|
121 | (1) |
|
5.5.4 Spin-Opposite-Scaled ADC Schemes |
|
|
122 | (1) |
|
5.5.5 Core-Valence Separated (CVS) EE-ADC |
|
|
123 | (2) |
|
5.6 Describing Molecular Photochemistry with ADC Methods |
|
|
125 | (1) |
|
5.6.1 Potential Energy Surfaces |
|
|
125 | (1) |
|
5.6.2 Environment Models within ADC |
|
|
126 | (1) |
|
5.7 Brief Summary and Perspective |
|
|
126 | (7) |
|
|
127 | (6) |
|
6 Foundation of Multi-Configurational Quantum Chemistry |
|
|
133 | (72) |
|
|
|
|
|
6.1 Scaling Problem in FCI, CAS and RAS Wave Functions |
|
|
136 | (2) |
|
6.2 Factorization and Coupling of Slater Determinants |
|
|
138 | (3) |
|
6.2.1 Slater Condon Rules |
|
|
140 | (1) |
|
6.3 Configuration State Functions |
|
|
141 | (17) |
|
6.3.1 The Unitary Group Approach (UGA) |
|
|
142 | (1) |
|
6.3.1 Analogy between CSFs and Spherical Harmonics |
|
|
143 | (1) |
|
6.3.1 Gel'fand-Tsetlin Basis |
|
|
143 | (2) |
|
6.3.1 Paldus and Weyl Tables |
|
|
145 | (3) |
|
|
148 | (1) |
|
6.3.2 The Graphical Unitary Group Approach (GUGA) |
|
|
148 | (5) |
|
6.3.3 Evaluation of Non-Vanishing Hamiltonian Matrix Elements |
|
|
153 | (1) |
|
6.3.3 One-Body Coupling Coefficients |
|
|
154 | (3) |
|
6.3.3 Two-Body Matrix Elements |
|
|
157 | (1) |
|
6.4 Configuration Interaction Eigenvalue Problem |
|
|
158 | (7) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (2) |
|
6.4.2 Direct-CI Algorithm |
|
|
162 | (3) |
|
|
165 | (17) |
|
6.5.1 The MCSCF Parameterization |
|
|
167 | (2) |
|
6.5.2 The MCSCF Gradient and Hessian |
|
|
169 | (1) |
|
6.5.3 One-Step and Two-Step Procedures |
|
|
170 | (1) |
|
6.5.4 Augmented Hessian Method |
|
|
171 | (1) |
|
6.5.5 Matrix form of the First and Second Derivatives in MCSCF |
|
|
171 | (4) |
|
6.5.6 Quadratically Converging Method with Optimal Convergence |
|
|
175 | (3) |
|
6.5.7 Orbital-CI Coupling Terms |
|
|
178 | (1) |
|
6.5.8 Super-CI for the Orbital Optimization |
|
|
179 | (2) |
|
6.5.9 Redundancy of Active Orbital Rotations |
|
|
181 | (1) |
|
6.6 Restricted and Generalized Active Space Wave Functions |
|
|
182 | (7) |
|
6.6.1 GUGA Applied to CAS, RAS and GAS Wave Functions |
|
|
184 | (2) |
|
6.6.2 Redundancies in GASSCF Orbital Rotations |
|
|
186 | (1) |
|
6.6.3 MCSCF Molecular Orbitals |
|
|
187 | (1) |
|
6.6.4 GASSCF Applied to the Gd2 Molecule |
|
|
188 | (1) |
|
|
189 | (2) |
|
6.7.1 Multi-State CI Solver |
|
|
190 | (1) |
|
6.7.2 State-Specific and State-Averaged MCSCF |
|
|
191 | (1) |
|
6.8 Stochastic Multiconfigurational Approaches |
|
|
191 | (14) |
|
6.8.1 FCIQMC Working Equation |
|
|
192 | (4) |
|
6.8.2 Multi-Wave Function Approach for Excited States |
|
|
196 | (1) |
|
6.8.3 Sampling Reduced Density Matrices |
|
|
196 | (2) |
|
|
198 | (7) |
|
7 The Density Matrix Renormalization Group for Strong Correlation in Ground and Excited States |
|
|
205 | (42) |
|
|
|
|
205 | (2) |
|
|
207 | (11) |
|
7.2.1 Renormalization Group Formulation |
|
|
207 | (3) |
|
7.2.2 Matrix Product States and Matrix Product Operators |
|
|
210 | (4) |
|
7.2.3 MPS-MPO Formulation of DMRG |
|
|
214 | (3) |
|
7.2.4 Connection between the Renormalization Group and the MPS-MPO Formulation of DMRG |
|
|
217 | (1) |
|
7.2.5 Developments to Enhance DMRG Convergence and Performance |
|
|
218 | (1) |
|
7.3 DMRG and Orbital Entanglement |
|
|
218 | (2) |
|
|
220 | (5) |
|
7.4.1 Calculating Excited States with DMRG |
|
|
220 | (1) |
|
7.4.2 Factors Affecting the DMRG Convergence and Accuracy |
|
|
220 | (1) |
|
7.4.3 Post-DMRG Methods for Dynamic Correlation and Environment Effects |
|
|
221 | (1) |
|
7.4.4 Analytical Energy Gradients and Non-Adiabatic Coupling Matrix Elements |
|
|
222 | (2) |
|
7.4.5 Tensor Network States |
|
|
224 | (1) |
|
7.5 Applications in Quantum Chemistry |
|
|
225 | (5) |
|
|
230 | (17) |
|
|
231 | (1) |
|
|
231 | (16) |
|
8 Excited-State Calculations with Quantum Monte Carlo |
|
|
247 | (30) |
|
|
|
|
247 | (2) |
|
8.2 Variational Monte Carlo |
|
|
249 | (3) |
|
8.3 Diffusion Monte Carlo |
|
|
252 | (4) |
|
8.4 Wave Functions and their Optimization |
|
|
256 | (5) |
|
8.4.1 Stochastic Reconfiguration Method |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
261 | (4) |
|
8.5.1 Energy-Based Methods |
|
|
261 | (2) |
|
8.5.2 Time-Dependent Linear-Response VMC |
|
|
263 | (1) |
|
8.5.3 Variance-Based Methods |
|
|
264 | (1) |
|
8.6 Applications to Excited States of Molecular Systems |
|
|
265 | (4) |
|
8.7 Alternatives to Diffusion Monte Carlo |
|
|
269 | (8) |
|
|
270 | (7) |
|
9 Multi-Reference Configuration Interaction |
|
|
277 | (22) |
|
|
|
|
277 | (1) |
|
|
278 | (11) |
|
9.2.1 Configuration Interaction and the Variational Principle |
|
|
278 | (2) |
|
9.2.2 The Size-Extensivity Problem of Truncated CI |
|
|
280 | (2) |
|
9.2.3 Multi-Reference Configuration Spaces |
|
|
282 | (4) |
|
9.2.4 Many-Electron Basis Functions: Determinants and CSFs |
|
|
286 | (1) |
|
|
287 | (2) |
|
|
289 | (5) |
|
9.3.1 Uncontracted and Contracted MRCI |
|
|
289 | (2) |
|
9.3.2 MRCI with Extensivity Corrections |
|
|
291 | (2) |
|
9.3.3 Types of Selection Schemes |
|
|
293 | (1) |
|
9.3.4 Construction of Orbitals |
|
|
293 | (1) |
|
9.4 Popular Implementations |
|
|
294 | (1) |
|
|
295 | (4) |
|
|
295 | (4) |
|
10 Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function |
|
|
299 | (56) |
|
|
|
10.1 Rayleigh-Schrodinger Perturbation Theory |
|
|
300 | (13) |
|
10.1.1 The Single-State Theory |
|
|
300 | (1) |
|
10.1.1 The Conventional Projectional Derivation |
|
|
300 | (4) |
|
10.1.1 The Bi-Variational Approach |
|
|
304 | (4) |
|
10.1.2 Convergence Properties and Intruder States |
|
|
308 | (2) |
|
10.1.2 Real and Imaginary Shift Techniques |
|
|
310 | (3) |
|
10.2 Moller-Plesset Perturbation Theory |
|
|
313 | (7) |
|
10.2.1 The Reference Function |
|
|
314 | (1) |
|
10.2.2 The Partitioning of the Hamiltonian |
|
|
315 | (1) |
|
10.2.3 The First-Order Interacting Space and Second-Order Energy Correction |
|
|
316 | (4) |
|
10.3 State-Specific Multi-Configurational Reference Perturbation Methods |
|
|
320 | (18) |
|
10.3.1 The Generation of the Reference Hamiltonian |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
323 | (1) |
|
10.3.3 The Partitioning of the Hamiltonian |
|
|
324 | (1) |
|
10.3.3 The First-Order Interacting Space |
|
|
325 | (3) |
|
10.3.3 Other Active Space References |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
331 | (1) |
|
10.3.4 The Partitioning of the Hamiltonian |
|
|
331 | (1) |
|
10.3.4 The First-Order Interacting Space |
|
|
332 | (1) |
|
|
333 | (1) |
|
10.3.5 The Partitioning of the Hamiltonian |
|
|
333 | (2) |
|
10.3.5 The First-Order Interacting Space |
|
|
335 | (1) |
|
10.3.6 Performance Improvements |
|
|
336 | (2) |
|
10.4 Quasi-Degenerate Perturbation Theory |
|
|
338 | (3) |
|
10.5 Multi-State Multi-Configurational Reference Perturbation Methods |
|
|
341 | (2) |
|
10.5.1 Multi-State CASPT2 Theory |
|
|
341 | (1) |
|
10.5.2 Extended MS-CASPT2 Theory |
|
|
342 | (1) |
|
|
343 | (12) |
|
|
345 | (1) |
|
|
345 | (5) |
|
|
350 | (5) |
|
|
355 | (300) |
|
11 Exact Quantum Dynamics (Wave Packets) in Reduced Dimensionality |
|
|
357 | (26) |
|
|
|
|
|
357 | (1) |
|
11.2 Fundamentals of Molecular Quantum Dynamics |
|
|
358 | (6) |
|
11.2.1 Wave Packet Dynamics |
|
|
358 | (2) |
|
11.2.2 Time-Propagator Schemes |
|
|
360 | (2) |
|
11.2.3 Excited State Wave Packet Dynamics |
|
|
362 | (1) |
|
11.2.4 Surfaces and Coupling Elements in Reactive Coordinates |
|
|
362 | (2) |
|
11.3 Choice of Dynamical Coordinates and Hamiltonian in Reduced Dimensionality |
|
|
364 | (14) |
|
11.3.1 Manual Selection by Chemical Intuition |
|
|
364 | (1) |
|
11.3.2 The G-Matrix Formalism |
|
|
365 | (1) |
|
|
366 | (1) |
|
11.3.2 Practical Computation of the G-Matrix Elements |
|
|
367 | (1) |
|
11.3.2 Photorelaxation of Uracil in Linear Reactive Coordinates |
|
|
367 | (2) |
|
11.3.3 Automatic Generation of Linear Coordinates |
|
|
369 | (1) |
|
11.3.3 IRC Based Approach |
|
|
369 | (2) |
|
11.3.3 Trajectory-Based Approach |
|
|
371 | (1) |
|
11.3.3 Comparison of Both Techniques for Linear Subspaces |
|
|
372 | (2) |
|
11.3.4 Automatic Generation of Non-Linear Coordinates |
|
|
374 | (4) |
|
11.4 Summary and Further Remarks |
|
|
378 | (5) |
|
|
379 | (4) |
|
12 Multi-Configuration Time-Dependent Hartree Methods: From Quantum to Semiclassical and Quantum-Classical |
|
|
383 | (30) |
|
|
|
|
|
383 | (2) |
|
12.2 Time-Dependent Variational Principle and MCTDH |
|
|
385 | (5) |
|
12.2.1 Variational Principle and Tangent Space Projections |
|
|
385 | (1) |
|
12.2.2 MCTDH: Variational Multi-Configurational Wave Functions |
|
|
386 | (1) |
|
12.2.2 MCTDH Wave Function Ansatz |
|
|
386 | (2) |
|
12.2.2 MCTDH Equations of Motion |
|
|
388 | (1) |
|
12.2.3 ML-MCTDH: Hierarchical Representations |
|
|
389 | (1) |
|
12.3 Gaussian-Based MCTDH |
|
|
390 | (6) |
|
|
390 | (1) |
|
12.3.1 G-MCTDH Wave Function Ansatz |
|
|
391 | (1) |
|
12.3.1 G-MCTDH Equations of Motion |
|
|
392 | (1) |
|
12.3.1 vMCG Equations of Motion |
|
|
393 | (1) |
|
|
394 | (1) |
|
12.3.2 Wave Function Ansatz |
|
|
394 | (1) |
|
12.3.2 Equations of Motion |
|
|
395 | (1) |
|
12.4 Quantum-Classical Multi-Configurational Approaches |
|
|
396 | (3) |
|
12.4.1 Quantum-Classical Limit of G-MCTDH |
|
|
396 | (2) |
|
12.4.2 Quantum-Classical Scheme with Finite-Width Wave Packets |
|
|
398 | (1) |
|
12.4.3 Related Approaches |
|
|
399 | (1) |
|
12.5 How to use MCTDH & Co |
|
|
399 | (1) |
|
12.6 Synopsis and Application to Donor-Acceptor Complex |
|
|
400 | (5) |
|
12.6.1 Hamiltonian, Spectral Densities, and Potential Surfaces |
|
|
400 | (2) |
|
12.6.2 Ultrafast Coherent Charge Transfer Dynamics |
|
|
402 | (1) |
|
12.6.3 Comparison of Methods |
|
|
403 | (2) |
|
12.7 Conclusions and Outlook |
|
|
405 | (8) |
|
|
406 | (1) |
|
|
406 | (7) |
|
13 Gaussian Wave Packets and the DD-vMCG Approach |
|
|
413 | (22) |
|
|
|
13.1 Historical Background |
|
|
413 | (2) |
|
|
415 | (9) |
|
13.2.1 Gaussian Wave Packets |
|
|
415 | (3) |
|
13.2.2 General Equations of Motion |
|
|
418 | (1) |
|
13.2.2 Coefficients and Parameters |
|
|
418 | (1) |
|
|
419 | (1) |
|
13.2.2 Nuclear and Electronic Degrees of Freedom |
|
|
420 | (2) |
|
13.2.3 Variational Multi-Configurational Gaussian Approach |
|
|
422 | (2) |
|
13.3 Example Calculations |
|
|
424 | (1) |
|
13.4 Tunneling Dynamics: Salicylaldimine |
|
|
425 | (1) |
|
13.5 Non-Adiabatic Dynamics: The Butatriene Cation |
|
|
426 | (2) |
|
13.6 Direct Non-Adiabatic Dynamics: Formamide |
|
|
428 | (3) |
|
|
431 | (1) |
|
13.8 Practical Implementation |
|
|
431 | (4) |
|
|
431 | (1) |
|
|
431 | (4) |
|
14 Full and Ab Initio Multiple Spawning |
|
|
435 | (34) |
|
|
|
435 | (1) |
|
14.2 Time-Dependent Molecular Schrodinger Equation in a Gaussian Basis |
|
|
436 | (4) |
|
14.2.1 Central Equations of Motion |
|
|
436 | (3) |
|
14.2.2 Dynamics of the Trajectory Basis Functions |
|
|
439 | (1) |
|
14.3 Full Multiple Spawning |
|
|
440 | (3) |
|
14.3.1 Full Multiple Spawning Equations |
|
|
440 | (2) |
|
14.3.2 Spawning Algorithm |
|
|
442 | (1) |
|
14.4 Extending Full Multiple Spawning |
|
|
443 | (4) |
|
14.4.1 External Field in Full Multiple Spawning |
|
|
444 | (1) |
|
14.4.2 Spin-Orbit Coupling in Full Multiple Spawning |
|
|
445 | (2) |
|
14.5 Ab Initio Multiple Spawning |
|
|
447 | (7) |
|
14.5.1 From Full- to Ab Initio Multiple Spawning |
|
|
447 | (2) |
|
14.5.2 Testing the Approximations of Ab Initio Multiple Spawning |
|
|
449 | (1) |
|
14.5.3 On-the-Fly Ab/nifio Multiple Spawning |
|
|
450 | (1) |
|
14.5.4 Ab Initio Multiple Spawning versus Trajectory Surface Hopping |
|
|
451 | (3) |
|
14.6 Dissecting an Ab Initio Multiple Spawning Dynamics |
|
|
454 | (5) |
|
14.6.1 The Different Steps of an Ab Initio Multiple Spawning Dynamics |
|
|
454 | (1) |
|
14.6.2 Example of Ab Initio Multiple Spawning Dynamics - the Photo-Chemistry of Cyclohexadiene |
|
|
455 | (4) |
|
14.7 In Silico Photo-Chemistry with Ab Initio Multiple Spawning |
|
|
459 | (3) |
|
|
462 | (7) |
|
|
463 | (6) |
|
15 Ehrenfest Methods for Electron and Nuclear Dynamics |
|
|
469 | (30) |
|
|
|
|
469 | (1) |
|
15.2 Theory of the (Simple) Ehrenfest Method |
|
|
470 | (4) |
|
15.2.1 Wave Function Ansatz |
|
|
471 | (1) |
|
15.2.2 Equations of Motion |
|
|
472 | (2) |
|
15.3 Theory of the Multi-Configurational Ehrenfest Method |
|
|
474 | (6) |
|
15.3.1 Wave Function Ansatz |
|
|
474 | (2) |
|
15.3.2 Equations of Motion |
|
|
476 | (3) |
|
15.3.3 Computational Aspects |
|
|
479 | (1) |
|
|
480 | (10) |
|
15.4.1 Coupled Electron and Nuclear Dynamics Upon Sudden Ionization |
|
|
481 | (4) |
|
15.4.2 Ultrafast Scattering as a Probe of Nuclear Dynamics |
|
|
485 | (5) |
|
|
490 | (9) |
|
|
491 | (8) |
|
16 Surface Hopping Molecular Dynamics |
|
|
499 | (32) |
|
|
|
|
|
499 | (1) |
|
16.2 Basics of Surface Hopping |
|
|
500 | (3) |
|
16.2.1 Advantages and Disadvantages |
|
|
500 | (1) |
|
|
501 | (2) |
|
16.3 Surface Hopping Ingredients |
|
|
503 | (10) |
|
|
503 | (1) |
|
16.3.2 Wave Function Propagation |
|
|
504 | (1) |
|
|
505 | (2) |
|
16.3.4 Surface Hopping Algorithm |
|
|
507 | (2) |
|
16.3.5 Kinetic Energy Adjustment and Frustrated Hops |
|
|
509 | (2) |
|
16.3.6 Coupling Terms and Representations |
|
|
511 | (2) |
|
|
513 | (8) |
|
16.4.1 Choice of the Electronic Structure Method |
|
|
513 | (3) |
|
16.4.2 Initial Conditions |
|
|
516 | (2) |
|
16.4.3 Example Application and Trajectory Analysis |
|
|
518 | (3) |
|
16.5 Popular Implementations |
|
|
521 | (1) |
|
16.6 Conclusion and Outlook |
|
|
522 | (9) |
|
|
522 | (1) |
|
|
522 | (9) |
|
17 Exact Factorization of the Electron-Nuclear Wave Function: Theory and Applications |
|
|
531 | (32) |
|
|
|
|
531 | (2) |
|
17.2 The Time-Dependent Molecular Problem in the Exact-Factorization Formulation |
|
|
533 | (3) |
|
17.2.1 Wave Function Ansatz |
|
|
533 | (2) |
|
17.2.2 Equations of Motion |
|
|
535 | (1) |
|
17.3 The Born-Oppenheimer Framework and the Exact Factorization |
|
|
536 | (9) |
|
17.3.1 One-Dimensional Case: Time-Dependent Potential Energy Surface |
|
|
538 | (4) |
|
17.3.2 Two-Dimensional Case: Time-Dependent Potential Energy Surface and Time-Dependent Vector Potential |
|
|
542 | (3) |
|
17.4 Trajectory-Based Solution of the Exact-Factorization Equations |
|
|
545 | (8) |
|
17.4.1 CT-MQC: The Approximations |
|
|
546 | (3) |
|
17.4.2 CT-MQC: Photo-Induced Ring Opening in Oxirane |
|
|
549 | (2) |
|
17.4.3 CT-MQC: The Algorithm |
|
|
551 | (2) |
|
17.5 The Molecular Berry Phase |
|
|
553 | (3) |
|
|
556 | (7) |
|
|
556 | (1) |
|
|
556 | (7) |
|
18 Bohmian Approaches to Non-Adiabatic Molecular Dynamics |
|
|
563 | (32) |
|
|
|
|
563 | (2) |
|
18.2 A Practical Overview of Bohmian Mechanics |
|
|
565 | (4) |
|
|
565 | (1) |
|
18.2.2 Computation of Bohmian Trajectories |
|
|
566 | (1) |
|
18.2.2 Trajectories from the Schrodinger Equation |
|
|
566 | (1) |
|
18.2.2 Trajectories from the Hamilton-Jacobi Equation |
|
|
567 | (1) |
|
18.2.2 Trajectories from a Complex Action |
|
|
568 | (1) |
|
18.2.3 Computation of Expectation Values |
|
|
569 | (1) |
|
18.3 The Born-Huang Picture of Molecular Dynamics |
|
|
569 | (4) |
|
18.3.1 The Molecular Schrodinger Equation in Position Space |
|
|
569 | (1) |
|
18.3.2 Schrodinger Equation in the Born-Huang Basis |
|
|
570 | (1) |
|
18.3.2 The Born-Oppenheimer Approximation: The Adiabatic Case |
|
|
571 | (1) |
|
18.3.2 Non-Adiabatic Dynamics |
|
|
572 | (1) |
|
|
573 | (6) |
|
18.4.1 The Non-Adiabatic Bohmian Dynamics Equations (NABDY) |
|
|
573 | (2) |
|
18.4.2 Implementation in Molecular Dynamics: The Adiabatic Case |
|
|
575 | (2) |
|
18.4.3 The Approximate Quantum Potential Approach |
|
|
577 | (2) |
|
|
579 | (9) |
|
18.5.1 The Conditional Wave Function Approach |
|
|
579 | (2) |
|
18.5.1 Hermitian Conditional Wave Function Approach |
|
|
581 | (1) |
|
18.5.2 The Interacting Conditional Wave Function Approach |
|
|
582 | (3) |
|
18.5.3 Time-Dependent Quantum Monte Carlo |
|
|
585 | (3) |
|
|
588 | (7) |
|
|
589 | (6) |
|
19 Semiclassical Molecular Dynamics for Spectroscopic Calculations |
|
|
595 | (34) |
|
|
|
|
595 | (3) |
|
19.2 From Feynman's Path Integral to van Vleck's Semiclassical Propagator |
|
|
598 | (3) |
|
19.3 The Semiclassical Initial Value Representation and the Heller-Herman-Kluk-Kay Formulation |
|
|
601 | (2) |
|
19.4 A Derivation of the Heller-Herman-Kluk-Kay Propagator |
|
|
603 | (1) |
|
19.5 The Time-Averaging Filter |
|
|
604 | (2) |
|
19.6 The Multiple Coherent States SCIVR |
|
|
606 | (4) |
|
19.7 The "Divide-and-Conquer" SCIVR |
|
|
610 | (5) |
|
19.8 Mixed SCIVR Dynamics: Towards Semiclassical Spectroscopy in Condensed Phase |
|
|
615 | (3) |
|
19.9 Semiclassical Spectroscopy Workflow |
|
|
618 | (1) |
|
19.10 A Taste of Semiclassical Spectroscopy |
|
|
619 | (3) |
|
19.11 Summary and Conclusions |
|
|
622 | (7) |
|
|
624 | (1) |
|
|
624 | (5) |
|
20 Path-Integral Approaches to Non-Adiabatic Dynamics |
|
|
629 | (26) |
|
|
|
|
|
629 | (2) |
|
20.2 Semiclassical Theory |
|
|
631 | (2) |
|
|
631 | (1) |
|
20.2.2 Linearized Semiclassical Dynamics |
|
|
632 | (1) |
|
20.3 Non-Equilibrium Dynamics |
|
|
633 | (7) |
|
20.3.1 Spin-Boson Systems |
|
|
634 | (2) |
|
20.3.2 Non-Equilibrium Correlation Functions |
|
|
636 | (4) |
|
20.4 Non-Adiabatic Path-Integral Theory |
|
|
640 | (6) |
|
20.4.1 Mean-Field Path-Integral Sampling |
|
|
640 | (1) |
|
20.4.2 Non-Adiabatic Ring-Polymer Molecular Dynamics |
|
|
641 | (3) |
|
20.4.3 Alleviation of the Negative Sign |
|
|
644 | (1) |
|
20.4.4 Practical Implementation of Monte Carlo Sampling |
|
|
644 | (2) |
|
20.5 Equilibrium Correlation Functions |
|
|
646 | (2) |
|
|
648 | (7) |
|
|
649 | (1) |
|
|
649 | (6) |
Index |
|
655 | |