Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Computation

  • Formāts: 391 pages
  • Sērija : Advances in Applied Mathematics
  • Izdošanas datums: 23-Feb-2023
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000835380
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 96,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 391 pages
  • Sērija : Advances in Applied Mathematics
  • Izdošanas datums: 23-Feb-2023
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000835380
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Quantum Computation presents the mathematics of quantum computation. The purpose is to introduce the topic of quantum computing to students in computer science, physics and mathematics who have no prior knowledge of this field.

The book is written in two parts. The primary mathematical topics required for an initial understanding of quantum computation are dealt with in Part I: sets, functions, complex numbers and other relevant mathematical structures from linear and abstract algebra. Topics are illustrated with examples focussing on the quantum computational aspects which will follow in more detail in Part II.

Part II discusses quantum information, quantum measurement and quantum algorithms. These topics provide foundations upon which more advanced topics may be approached with confidence.

Features











A more accessible approach than most competitor texts, which move into advanced, research-level topics too quickly for today's students.





Part I is comprehensive in providing all necessary mathematical underpinning, particularly for those who need more opportunity to develop their mathematical competence.





More confident students may move directly to Part II and dip back into Part I as a reference.





Ideal for use as an introductory text for courses in quantum computing.





Fully worked examples illustrate the application of mathematical techniques.







Exercises throughout develop concepts and enhance understanding.





End-of-chapter exercises offer more practice in developing a secure foundation.
Part I Mathematical Foundations for Quantum Computation.
1. Mathematical
preliminaries.
2. Functions and their application to digital gates.
3.
Complex numbers.
4. Vectors.
5. Matrices.
6. Vector spaces.
7. Eigenvalues
and eigenvectors of a matrix.
8. Group theory.
9. Linear transformations.
10.
Tensor product spaces.
11. Linear operators and their matrix representations.
Part II Foundations of quantum-gate computation.
12. Introduction to Part II.
13. Axioms for quantum computation.
14. Quantum measurement
1. 15. Quantum
information processing 1: the quantum emulation of familiar invertible
digital gates.
16. Unitary extensions of the gates notQ, FQ, TQ and PQ: more
general quantum inputs.
17. Quantum information processing 2: the quantum
emulation of arbitrary Boolean functions.
18. Invertible digital circuits and
their quantum emulations.
19. Quantum measurement 2: general pure states,
Bell states.
20. Quantum information processing
3. 21. More on quantum gates
and circuits: those without digital equivalents.
22. Quantum algorithms
1.
23. Quantum algorithms 2: Simon's algorithm.
Helmut Bez holds a doctorate in quantum mechanics from Oxford University. He is a visiting fellow in Quantum Computation in the Department of Computer Science at Loughborough University, England. He has authored around 50 refereed papers in international journals and a further 50 papers in refereed conference proceedings. He has 35 years' teaching experience in computer science, latterly as reader in geometric computation, Loughborough University. He has supervised/co-supervised 18 doctoral students.

Tony Croft was the founding director of the Mathematics Education Centre at Loughborough University, one of the largest groups of mathematics education researchers in the UK, with an international reputation for the research into and practice of the learning and teaching of mathematics. He is co-author of several university-level textbooks, has co-authored numerous academic papers and edited academic volumes. He jointly won the IMA Gold Medal 2016 for outstanding contribution to the improvement of the teaching of mathematics and is a UK National Teaching Fellow. He is currently emeritus professor of mathematics education at Loughborough University.

(https://www.lboro.ac.uk/departments/mec/staff/academic-visitors/tony-croft/)