I From Linear Algebra to Quantum Computing |
|
1 | |
|
1 Basics of Vectors and Matrices |
|
|
3 | |
|
|
4 | |
|
1.2 Linear Dependence and Independence of Vectors |
|
|
5 | |
|
|
6 | |
|
1.4 Basis, Projection Operator and Completeness Relation |
|
|
8 | |
|
1.4.1 Orthonormal Basis and Completeness Relation |
|
|
8 | |
|
1.4.2 Projection Operators |
|
|
9 | |
|
1.4.3 Gram-Schmidt Orthonormalization |
|
|
10 | |
|
1.5 Linear Operators and Matrices |
|
|
11 | |
|
1.5.1 Hermitian Conjugate, Hermitian and Unitary Matrices |
|
|
12 | |
|
|
13 | |
|
1.6.1 Eigenvalue Problems of Hermitian and Normal Matrices |
|
|
14 | |
|
|
18 | |
|
1.8 Spectral Decomposition |
|
|
19 | |
|
1.9 Singular Value Decomposition (SVD) |
|
|
23 | |
|
1.10 Tensor Product (Kronecker Product) |
|
|
26 | |
|
2 Framework of Quantum Mechanics |
|
|
29 | |
|
2.1 Fundamental Postulates |
|
|
29 | |
|
|
32 | |
|
2.3 Multipartite System, Tensor Product and Entangled State |
|
|
36 | |
|
2.4 Mixed States and Density Matrices |
|
|
38 | |
|
|
42 | |
|
2.4.2 Partial Trace and Purification |
|
|
45 | |
|
|
47 | |
|
3 Qubits and Quantum Key Distribution |
|
|
51 | |
|
|
51 | |
|
|
51 | |
|
|
53 | |
|
3.1.3 Multi-Qubit Systems and Entangled States |
|
|
54 | |
|
|
56 | |
|
3.1.5 Einstein-Podolsky-Rosen (EPR) Paradox |
|
|
59 | |
|
3.2 Quantum Key Distribution (BB84 Protocol) |
|
|
60 | |
|
4 Quantum Gates, Quantum Circuit and Quantum Computation |
|
|
65 | |
|
|
65 | |
|
|
66 | |
|
4.2.1 Simple Quantum Gates |
|
|
66 | |
|
4.2.2 Walsh-Hadamard Transformation |
|
|
69 | |
|
4.2.3 SWAP Gate and Fredkin Gate |
|
|
70 | |
|
4.3 Correspondence with Classical Logic Gates |
|
|
71 | |
|
|
72 | |
|
|
72 | |
|
|
73 | |
|
|
73 | |
|
|
75 | |
|
4.5 Dense Coding and Quantum Teleportation |
|
|
76 | |
|
|
77 | |
|
4.5.2 Quantum Teleportation |
|
|
79 | |
|
4.6 Universal Quantum Gates |
|
|
82 | |
|
4.7 Quantum Parallelism and Entanglement |
|
|
95 | |
|
5 Simple Quantum Algorithms |
|
|
99 | |
|
|
99 | |
|
5.2 Deutsch-Jozsa Algorithm and Bernstein-Vazirani Algorithm |
|
|
101 | |
|
|
105 | |
|
6 Quantum Integral Transforms |
|
|
109 | |
|
6.1 Quantum Integral Transforms |
|
|
109 | |
|
6.2 Quantum Fourier Transform (QFT) |
|
|
111 | |
|
6.3 Application of QFT: Period-Finding |
|
|
113 | |
|
6.4 implementation of QFT |
|
|
116 | |
|
6.5 Walsh-Hadamard Transform |
|
|
122 | |
|
6.6 Selective Phase Rotation Transient) |
|
|
123 | |
|
7 Grover's Search .Algorithm |
|
|
125 | |
|
7.1 Searching for a Single File |
|
|
125 | |
|
7.2 Searching for d Files |
|
|
133 | |
|
8 Shor's Factorization Algorithm |
|
|
137 | |
|
|
137 | |
|
8.2 Factorization Algorithm |
|
|
140 | |
|
8.3 Quantum Part of Shor's Algorithm |
|
|
141 | |
|
8.3.1 Settings for STEP 2 |
|
|
141 | |
|
|
113 | |
|
8.4 Probability Distribution |
|
|
144 | |
|
8.5 Continued Fractions and Order Finding |
|
|
151 | |
|
8.6 Modular Exponential Function |
|
|
156 | |
|
|
157 | |
|
|
161 | |
|
8.6.3 Modular Multiplexer |
|
|
166 | |
|
8.6.4 Modular Exponential Function |
|
|
168 | |
|
8.6.5 Computational Complexity of Modular Exponential Circuit |
|
|
170 | |
|
|
173 | |
|
|
173 | |
|
9.1.1 Quantum Operations and Kraus Operators |
|
|
174 | |
|
9.1.2 Operator-Sum Representation and Noisy Quantum Channel |
|
|
177 | |
|
9.1.3 Completely Positive Maps |
|
|
178 | |
|
9.2 Measurements as Quantum Operations |
|
|
179 | |
|
9.2.1 Projective Measurements |
|
|
179 | |
|
|
180 | |
|
|
181 | |
|
|
181 | |
|
|
183 | |
|
9.3.3 Depolarizing Channel |
|
|
185 | |
|
9.3.4 Amplitude-Damping Channel |
|
|
187 | |
|
|
188 | |
|
9.4.1 Quantum Dynamical Semigroup |
|
|
189 | |
|
|
189 | |
|
|
192 | |
|
10 Quantum Error Correcting Codes |
|
|
195 | |
|
|
195 | |
|
10.2 Three-Qubit Bit-Flip Code and Phase-Flip Code |
|
|
196 | |
|
|
196 | |
|
|
202 | |
|
10.3 Shor's Nine-Qubit Code |
|
|
203 | |
|
|
204 | |
|
|
205 | |
|
10.3.3 Error Syndrome Detection and Correction |
|
|
205 | |
|
|
208 | |
|
|
209 | |
|
10.4.1 Classical Theory of Error Correcting Codes |
|
|
209 | |
|
|
213 | |
|
10.4.3 Gate Operations for Seven-Qubit QECC |
|
|
220 | |
|
|
224 | |
|
|
224 | |
|
10.5.2 Error Syndrome Detection |
|
|
227 | |
II Physical Realizations of Quantum Computing |
|
231 | |
|
|
233 | |
|
|
233 | |
|
|
234 | |
|
11.3 Physical Realizations |
|
|
239 | |
|
|
241 | |
|
|
241 | |
|
|
241 | |
|
|
242 | |
|
|
242 | |
|
|
245 | |
|
12.3.1 Single-Spin Hamiltonian |
|
|
245 | |
|
12.3.2 Multi-Spin Hamiltonian |
|
|
248 | |
|
12.4 Implementation of Gates and Algorithms |
|
|
252 | |
|
12.4.1 One-Qubit Gates in One-Qubit Molecule |
|
|
252 | |
|
12.4.2 One-Qubit Operation in Two-Qubit Molecule: Bloch-Siegert Effect |
|
|
256 | |
|
|
257 | |
|
|
259 | |
|
12.5 Time-Optimal Control of NMR Quantum Computer |
|
|
262 | |
|
12.5.1 A Brief Introduction to Lie Algebras and Lie Groups |
|
|
262 | |
|
12.5.2 Cartan Decomposition and Optimal Implementation of Two-Qubit Gates |
|
|
264 | |
|
|
268 | |
|
12.6.1 Introduction and Preliminary |
|
|
268 | |
|
12.6.2 One-Qubit Quantum State Tomography |
|
|
269 | |
|
12.6.3 Free Induction Decay (FID) |
|
|
270 | |
|
12.6.4 Two-Qubit Tomography |
|
|
271 | |
|
12.7 Preparation of Pseudopure State |
|
|
274 | |
|
12.7.1 Temporal Averaging |
|
|
276 | |
|
|
277 | |
|
|
281 | |
|
|
285 | |
|
|
285 | |
|
13.2 Electronic States of Ions as Quoits |
|
|
287 | |
|
|
289 | |
|
13.3.1 Trapping Potential |
|
|
289 | |
|
|
294 | |
|
|
296 | |
|
|
298 | |
|
13.4.1 One-Spin Hamiltonian |
|
|
298 | |
|
|
301 | |
|
|
302 | |
|
|
302 | |
|
|
304 | |
|
|
306 | |
|
|
307 | |
|
14 Quantum Computing with Neutral Atoms |
|
|
311 | |
|
|
311 | |
|
14.2 Trapping Neutral Atoms |
|
|
311 | |
|
14.2.1 Alkali Metal Atoms |
|
|
311 | |
|
14.2.2 Magneto-Optical Trap (MOT) |
|
|
312 | |
|
14.2.3 Optical Dipole Trap |
|
|
314 | |
|
|
316 | |
|
14.2.5 Spin-Dependent Optical Potential |
|
|
317 | |
|
|
319 | |
|
14.4 Quantum State Engineering of Neutral Atoms |
|
|
321 | |
|
14.4.1 Trapping of a Single Atom |
|
|
321 | |
|
|
321 | |
|
14.4.3 Neutral Atom Quantum Regisiter |
|
|
323 | |
|
14.5 Preparation of Entangled Neutral Atoms |
|
|
324 | |
|
|
327 | |
|
15 Josephson Junction Qubits |
|
|
329 | |
|
|
329 | |
|
15.2 Nanoscale Josephson Junctions and SQUIDs |
|
|
330 | |
|
15.2.1 Josephson Junctions |
|
|
330 | |
|
|
333 | |
|
|
337 | |
|
15.3.1 Simple Cooper Pair Box |
|
|
337 | |
|
15.3.2 Split Cooper Pair Box |
|
|
341 | |
|
|
342 | |
|
15.4.1 Simplest Flux Qubit |
|
|
342 | |
|
15.4.2 Three-Junction Flux Qubit |
|
|
345 | |
|
|
347 | |
|
15.6 Current-Biased Qubit (Phase Qubit) |
|
|
348 | |
|
|
352 | |
|
|
352 | |
|
15.7.2 Readout of Quantronium |
|
|
355 | |
|
15.7.3 Switching Current Readout of Flux Qubits |
|
|
357 | |
|
|
358 | |
|
15.8.1 Capacitively Coupled Charge Qubits |
|
|
359 | |
|
15.8.2 Inductive Coupling of Charge Qubits |
|
|
362 | |
|
15.8.3 Tunable Coupling between Flux Qubits |
|
|
366 | |
|
15.8.4 Coupling Flux Qubits with an LC Resonator |
|
|
369 | |
|
|
374 | |
|
16 Quantum Computing with Quantum Dots |
|
|
377 | |
|
|
377 | |
|
16.2 Mesoscopic Semiconductors |
|
|
377 | |
|
16.2.1 Two-Dimensional Electron Gas in Inversion Layer |
|
|
377 | |
|
|
378 | |
|
16.3 Electron Charge Qubit |
|
|
383 | |
|
16.3.1 Electron Charge Qubit |
|
|
384 | |
|
|
385 | |
|
|
386 | |
|
16.4.1 Electron Spin Qubit |
|
|
386 | |
|
16.4.2 Single-Qubit Operations |
|
|
387 | |
|
|
390 | |
|
|
396 | |
|
|
396 | |
|
|
397 | |
A Solutions to Selected Exercises |
|
399 | |
Index |
|
417 | |