Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Mechanics

3.80/5 (10 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Sērija : Advanced Texts in Physics
  • Izdošanas datums: 16-May-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540288053
  • Formāts - PDF+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Advanced Texts in Physics
  • Izdošanas datums: 16-May-2006
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540288053

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Gives a fresh and modern approach to the field. It is a textbook on the principles of the theory, its mathematical framework and its first applications. It constantly refers to modern and practical developments, tunneling microscopy, quantum information, Bell inequalities, quantum cryptography, Bose-Einstein condensation and quantum astrophysics. The book also contains 92 exercises with their solutions.



Including a CD-ROM by Manuel Joffre

Recenzijas

From the reviews of the first edition: "This textbook on quantum mechanics is the corrected second printing of the book, that first appeared in 2002. ... Great attention is paid to give some intuition of the phenomena ... . Connection to recent experiments and topics, objects of new research developments, as well as to the historical aspects, is made whenever possible. Also each chapter ends with a nice bibliography ... together with very interesting exercises ... . " (Bassano Vacchini, Zentralblatt MATH, Vol. 1087, 2006)

Physical Constants xxiii
Quantum Phenomena
1(16)
The Franck and Hertz Experiment
3(2)
Interference of Matter Waves
5(5)
The Young Double-Slit Experiment
6(1)
Interference of Atoms in a Double-Slit Experiment
7(1)
Probabilistic Aspect of Quantum Interference
8(2)
The Experiment of Davisson and Germer
10(5)
Diffraction of X Rays by a Crystal
10(2)
Electron Diffraction
12(3)
Summary of a Few Important Ideas
15(2)
Further Reading
15(1)
Exercises
16(1)
The Wave Function and the Schrodinger Equation
17(22)
The Wave Function
18(2)
Description of the State of Particle
18(1)
Position Measurement of the Particle
19(1)
Interference and the Superposition Principle
20(4)
De Broglie Waves
20(1)
The Superposition Principle
21(1)
The Wave Equation in Vacuum
22(2)
Free Wave Packets
24(4)
Definition of a Wave Packet
24(1)
Fourier Transformation
24(1)
Structure of the Wave Packet
25(1)
Propagation of a Wave Packet: the Group Velocity
26(1)
Propagation of a Wave Packet: Average Position and Spreading
27(1)
Momentum Measurements and Uncertainty Relations
28(3)
The Momentum Probability Distribution
29(1)
Heisenberg Uncertainty Equations
30(1)
The Schrodinger Equation
31(3)
Equation of Motion
32(1)
Particle in a Potential: Uncertainty Relations
32(1)
Stability of Matter
33(1)
Momentum Measurement in a Time-of-Flight Experiment
34(5)
Further Reading
36(1)
Exercises
37(2)
Physical Quantities and Measurements
39(24)
Measurements in Quantum Mechanics
40(2)
The Measurement Procedure
40(1)
Experimental Facts
41(1)
Reinterpretation of Position and Momentum Measurements
41(1)
Physical Quantities and Observables
42(3)
Expectation Value of a Physical Quantity
42(1)
Position and Momentum Observables
43(1)
Other Observables: the Correspondence Principle
44(1)
Commutation of Observables
44(1)
Possible Results of a Measurement
45(3)
Eigenfunctions and Eigenvalues of an Observable
45(1)
Results of a Measurement and Reduction of the Wave Packet
46(1)
Individual Versus Multiple Measurements
47(1)
Relation to Heisenberg Uncertainty Relations
47(1)
Measurement and Coherence of Quantum Mechanics
48(1)
Energy Eigenfunctions and Stationary States
48(2)
Isolated Systems: Stationary States
49(1)
Energy Eigenstates and Time Evolution
50(1)
The Probability Current
50(2)
Crossing Potential Barriers
52(5)
The Eigenstates of the Hamiltonian
52(1)
Boundary Conditions at the Discontinuities of the Potential
53(1)
Reflection and Transmission on a Potential Step
54(2)
Potential Barrier and Tunnel Effect
56(1)
Summary of
Chapters 2 and 3
57(6)
Further Reading
59(1)
Exercises
60(3)
Quantization of Energy in Simple Systems
63(26)
Bound States and Scattering States
63(3)
Stationary States of the Schrodinger Equation
64(1)
Bound States
64(1)
Scattering States
65(1)
The One Dimensional Harmonic Oscillator
66(4)
Definition and Classical Motion
66(1)
The Quantum Harmonic Oscillator
67(2)
Examples
69(1)
Square-Well Potentials
70(5)
Relevance of Square Potentials
70(1)
Bound States in a One-Dimensional Square-Well Potential
71(2)
Infinite Square Well
73(1)
Particle in a Three-Dimensional Box
74(1)
Periodic Boundary Conditions
75(3)
A One-Dimensional Example
75(2)
Extension to Three Dimensions
77(1)
Introduction of Phase Space
78(1)
The Double Well Problem and the Ammonia Molecule
78(6)
Model of the NH3 Molecule
79(1)
Wave Functions
79(2)
Energy Levels
81(1)
The Tunnel Effect and the Inversion Phenomenon
82(2)
Other Applications of the Double Well
84(5)
Further Reading
86(1)
Exercises
87(2)
Principles of Quantum Mechanics
89(26)
Hilbert Space
90(2)
The State Vector
90(1)
Scalar Products and the Dirac Notations
90(1)
Examples
91(1)
Bras and Kets, Brackets
92(1)
Operators in Hilbert Space
92(3)
Matrix Elements of an Operator
92(1)
Adjoint Operators and Hermitian Operators
93(1)
Eigenvectors and Eigenvalues
94(1)
Summary: Syntax Rules in Dirac's Formalism
95(1)
The Spectral Theorem
95(4)
Hilbertian Bases
95(1)
Projectors and Closure Relation
96(1)
The Spectral Decomposition of an Operator
96(1)
Matrix Representations
97(2)
Measurement of Physical Quantities
99(1)
Statement of the Principles of Quantum Mechanics
100(4)
Structure of Hilbert Space
104(3)
Tensor Products of Spaces
104(1)
The Appropriate Hilbert Space
105(1)
Properties of Tensor Products
105(1)
Operators in a Tensor Product Space
106(1)
Simple Examples
106(1)
Reversible Evolution and the Measurement Process
107(8)
Further Reading
110(1)
Exercises
111(4)
Two-State Systems, Principle of the Maser
115(20)
Two-Dimensional Hilbert Space
115(1)
A Familiar Example: the Polarization of Light
116(4)
Polarization States of a Photon
116(2)
Measurement of Photon Polarizations
118(1)
Successive Measurements and ``Quantum Logic''
119(1)
The Model of the Ammonia Molecule
120(3)
Restriction to a Two-Dimensional Hilbert Space
120(1)
The Basis {|ψS>, |ψA>}
121(2)
The Basis {|ψR>, |ψL>}
123(1)
The Ammonia Molecule in an Electric Field
123(6)
The Coupling of NH3 to an Electric Field
124(1)
Energy Levels in a Fixed Electric Field
125(2)
Force Exerted on the Molecule by an Inhomogeneous Field
127(2)
Oscillating Fields and Stimulated Emission
129(2)
Principle and Applications of Masers
131(4)
Amplifier
131(1)
Oscillator
132(1)
Atomic Clocks
132(1)
Further Reading
132(1)
Exercises
133(2)
Commutation of Observables
135(22)
Commutation Relations
136(1)
Uncertainty Relations
137(1)
Ehrenfest's Theorem
138(4)
Evolution of the Expectation Value of an Observable
138(1)
Particle in a Potential V(r)
139(1)
Constants of Motion
140(2)
Commuting Observables
142(6)
Existence of a Common Eigenbasis for Commuting Observables
142(1)
Complete Set of Commuting Observables (CSCO)
142(1)
Completely Prepared Quantum State
143(2)
Symmetries of the Hamiltonian and Search of Its Eigenstates
145(3)
Algebraic Solution of the Harmonic-Oscillator Problem
148(9)
Reduced Variables
148(1)
Annihilation and Creation Operators a and a†
148(1)
Eigenvalues of the Number Operator N
149(1)
Eigenstates
150(1)
Further Reading
151(1)
Exercises
152(5)
The Stern--Gerlach Experiment
157(20)
Principle of the Experiment
157(4)
Classical Analysis
157(2)
Experimental Results
159(2)
The Quantum Description of the Problem
161(2)
The Observables μx and μy
163(2)
Discussion
165(3)
Incompatibility of Measurements Along Different Axes
165(1)
Classical Versus Quantum Analysis
166(1)
Measurement Along an Arbitrary Axis
167(1)
Complete Description of the Atom
168(2)
Hilbert Space
168(1)
Representation of States and Observables
169(1)
Energy of the Atom in a Magnetic Field
170(1)
Evolution of the Atom in a Magnetic Field
170(5)
Schrodinger Equation
170(1)
Evolution in a Uniform Magnetic Field
171(2)
Explanation of the Stern--Gerlach Experiment
173(2)
Conclusion
175(2)
Further Reading
175(1)
Exercises
176(1)
Approximation Methods
177(12)
Perturbation Theory
177(6)
Definition of the Problem
177(1)
Power Expansion of Energies and Eigenstates
178(1)
First-Order Perturbation in the Nondegenerate Case
179(1)
First-Order Perturbation in the Degenerate Case
179(1)
First-Order Perturbation to the Eigenstates
180(1)
Second-Order Perturbation to the Energy Levels
181(1)
Examples
181(1)
Remarks on the Convergence of Perturbation Theory
182(1)
The Variational Method
183(6)
The Ground State
183(1)
Other Levels
184(1)
Examples of Applications of the Variational Method
185(2)
Exercises
187(2)
Angular Momentum
189(18)
Orbital Angular Momentum and the Commutation Relations
190(1)
Eigenvalues of Angular Momentum
190(6)
The Observables J2 and Jz and the Basis States |j, m>
191(1)
The Operators J±
192(1)
Action of J± on the States |j, m>
192(1)
Quantization of j and m
193(2)
Measurement of Jx and Jy
195(1)
Orbital Angular Momentum
196(5)
The Quantum Numbers m and l are Integers
196(1)
Spherical Coordinates
197(1)
Eigenfunctions of L2 and Lz: the Spherical Harmonics
198(1)
Examples of Spherical Harmonics
199(1)
Example: Rotational Energy of a Diatomic Molecule
200(1)
Angular Momentum and Magnetic Moment
201(6)
Orbital Angular Momentum and Magnetic Moment
202(1)
Generalization to Other Angular Momenta
203(1)
What Should we Think about Half-Integer Values of j and m ?
204(1)
Further Reading
204(1)
Exercises
205(2)
Initial Description of Atoms
207(24)
The Two-Body Problem; Relative Motion
208(2)
Motion in a Central Potential
210(5)
Spherical Coordinates
210(1)
Eigenfunctions Common to H, L2 and, Lz
211(4)
The Hydrogen Atom
215(9)
Orders of Magnitude: Appropriate Units in Atomic Physics
215(1)
The Dimensionless Radial Equation
216(3)
Spectrum of Hydrogen
219(1)
Stationary States of the Hydrogen Atom
220(1)
Dimensions and Orders of Magnitude
221(2)
Time Evolution of States of Low Energies
223(1)
Hydrogen-Like Atoms
224(1)
Muonic Atoms
224(2)
Spectra of Alkali Atoms
226(5)
Further Reading
227(1)
Exercises
228(3)
Spin 1/2 and Magnetic Resonance
231(18)
The Hilbert Space of Spin 1/2
232(3)
Spin Observables
233(1)
Representation in a Particular Basis
233(1)
Matrix Representation
234(1)
Arbitrary Spin State
234(1)
Complete Description of a Spin-1/2 Particle
235(1)
Hilbert Space
235(1)
Representation of States and Observables
235(1)
Spin Magnetic Moment
236(2)
The Stern-Gerlach Experiment
236(1)
Anomalous Zeeman Effect
237(1)
Magnetic Moment of Elementary Particles
237(1)
Uncorrelated Space and Spin Variables
238(1)
Magnetic Resonance
239(10)
Larmor Precession in a Fixed Magnetic Field B0
239(1)
Superposition of a Fixed Field and a Rotating Field
240(2)
Rabi's Experiment
242(2)
Applications of Magnetic Resonance
244(1)
Rotation of a Spin 1/2 Particle by 2π
245(1)
Further Reading
246(1)
Exercises
247(2)
Addition of Angular Momenta, Fine and Hyperfine Structure of Atomic Spectra
249(24)
Addition of Angular Momenta
249(9)
The Total-Angular Momentum Operator
249(1)
Uncoupled and Coupled Bases
250(1)
A Simple Case: the Addition of Two Spins of 1/2
251(3)
Addition of Two Arbitrary Angular Momenta
254(4)
One-Electron Atoms, Spectroscopic Notations
258(1)
Fine Structure of Monovalent Atoms
258(3)
Hyperfine Structure; the 21 cm Line of Hydrogen
261(12)
Interaction Energy
261(1)
Perturbation Theory
262(1)
Diagonalization of H1
263(2)
The Effect of an External Magnetic Field
265(1)
The 21 cm Line in Astrophysics
265(3)
Further Reading
268(1)
Exercises
268(5)
Entangled States, EPR Paradox and Bell's Inequality
273(20)
Philippe Grangier
The EPR Paradox and Bell's Inequality
274(8)
``God Does not Play Dice''
274(1)
The EPR Argument
275(3)
Bell's Inequality
278(3)
Experimental Tests
281(1)
Quantum Cryptography
282(5)
The Communication Between Alice and Bob
282(3)
The Quantum Noncloning Theorem
285(1)
Present Experimental Setups
286(1)
The Quantum Computer
287(6)
The Quantum Bits, or ``Q-Bits''
287(1)
The Algorithm of Peter Shor
288(1)
Principle of a Quantum Computer
289(1)
Decoherence
290(1)
Further Reading
290(1)
Exercises
291(2)
The Lagrangian and Hamiltonian Formalisms, Lorentz Force in Quantum Mechanics
293(16)
Lagrangian Formalism and the Least-Action Principle
294(3)
Least Action Principle
294(1)
Lagrange Equations
295(2)
Energy
297(1)
Canonical Formalism of Hamilton
297(3)
Conjugate Momenta
297(1)
Canonical Equations
298(1)
Poisson Brackets
299(1)
Analytical Mechanics and Quantum Mechanics
300(1)
Classical Charged Particles in an Electromagnetic Field
301(1)
Lorentz Force in Quantum Mechanics
302(7)
Hamiltonian
302(1)
Gauge Invariance
303(1)
The Hydrogen Atom Without Spin in a Uniform Magnetic Field
304(1)
Spin-1/2 Particle in an Electromagnetic Field
305(1)
Further Reading
305(1)
Exercises
305(4)
Identical Particles and the Pauli Principle
309(22)
Indistinguishability of Two Identical Particles
310(2)
Identical Particles in Classical Physics
310(1)
The Quantum Problem
310(2)
Two-Particle Systems; the Exchange Operator
312(2)
The Hilbert Space for the Two Particle System
312(1)
The Exchange Operator Between Two Identical Particles
312(1)
Symmetry of the States
313(1)
The Pauli Principle
314(3)
The Case of Two Particles
314(1)
Independent Fermions and Exclusion Principle
315(1)
The Case of N Identical Particles
316(1)
Time Evolution
317(1)
Physical Consequences of the Pauli Principle
317(14)
Exchange Force Between Two Fermions
318(1)
The Ground State of N Identical Independent Particles
318(2)
Behavior of Fermion and Boson Systems at Low Temperature
320(2)
Stimulated Emission and the Laser Effect
322(1)
Uncertainty Relations for a System of N Fermions
323(1)
Complex Atoms and Atomic Shells
324(2)
Further Reading
326(1)
Exercises
327(4)
The Evolution of Systems
331(26)
Gilbert Grynberg
Time-Dependent Perturbation Theory
332(4)
Transition Probabilities
332(1)
Evolution Equations
332(1)
Perturbative Solution
333(1)
First-Order Solution: the Born Approximation
334(1)
Particular Cases
334(1)
Perturbative and Exact Solutions
335(1)
Interaction of an Atom with an Electromagnetic Wave
336(7)
The Electric-Dipole Approximation
336(1)
Justification of the Electric Dipole Interaction
337(1)
Absorptian of Energy by an Atom
338(1)
Selection Rules
339(1)
Spontaneous Emission
339(2)
Control of Atomic Motion by Light
341(2)
Decay of a System
343(7)
The Radioactivity of 57Fe
343(2)
The Fermi Golden Rule
345(1)
Orders of Magnitude
346(1)
Behavior for Long Times
347(3)
The Time-Energy Uncertainty Relation
350(7)
Isolated Systems and Intrinsic Interpretations
350(1)
Interpretation of Landau and Peierls
351(1)
The Einstein-Bohr Controversy
352(1)
Further Reading
353(1)
Exercises
353(4)
Scattering Processes
357(24)
Concept of Cross Section
358(3)
Definition of Cross Section
358(1)
Classical Calculation
359(1)
Examples
360(1)
Quantum Calculation in the Born Approximation
361(6)
Asymptotic States
361(1)
Transition Probability
362(1)
Scattering Cross Section
363(1)
Validity of the Born Approximation
364(1)
Example: the Yukawa Potential
365(1)
Range of a Potential in Quantum Mechanics
366(1)
Exploration of Composite Systems
367(5)
Scattering Off a Bound State and the Form Factor
367(1)
Scattering by a Charge Distribution
368(4)
General Scattering Theory
372(3)
Scattering States
372(1)
The Scattering Amplitude
373(1)
The Integral Equation for Scattering
374(1)
Scattering at Low Energy
375(6)
The Scattering Length
375(1)
Explicit Calculation of a Scattering Length
376(1)
The Case of Identical Particles
377(1)
Further Reading
378(1)
Exercises
378(3)
Qualitative Physics on a Macroscopic Scale
381(16)
Alfred Vidal-Madjar
Confined Particles and Ground State Energy
382(4)
The Quantum Pressure
382(1)
Hydrogen Atom
383(1)
N-Fermion Systems and Complex Atoms
383(1)
Molecules, Liquids and Solids
384(1)
Hardness of a Solid
385(1)
Gravitational Versus Electrostatic Forces
386(6)
Screening of Electrostatic Interactions
386(1)
Additivity of Gravitational Interactions
387(1)
Ground State of a Gravity-Dominated Object
388(2)
Liquefaction of a Solid and the Height of Mountains
390(2)
White Dwarfs, Neutron Stars and the Gravitational Catastrophe
392(5)
White Dwarfs and the Chandrasekhar Mass
392(2)
Neutron Stars
394(2)
Further Reading
396(1)
Early History of Quantum Mechanics
397(10)
The Origin of Quantum Concepts
397(1)
Planck's Radiation Law
397(1)
Photons
398(1)
The Atomic Spectrum
398(2)
Empirical Regularities of Atomic Spectra
398(1)
The Structure of Atoms
399(1)
The Bohr Atom
399(1)
The Old Theory of Quanta
400(1)
Spin
400(1)
Heisenberg's Matrices
401(2)
Wave Mechanics
403(1)
The Mathematical Formalization
404(1)
Some Important Steps in More Recent Years
405(2)
Further Reading
406(1)
Appendix A Concepts of Probability Theory 407(10)
1 Fundamental Concepts
407(1)
2 Examples of Probability Laws
408(1)
2.1 Discrete Laws
408(1)
2.2 Continuous Probability Laws in One or Several Variables
408(1)
3 Random Variables
409(3)
3.1 Definition
409(1)
3.2 Conditional Probabilities
410(1)
3.3 Independent Random Variables
411(1)
3.4 Binomial Law and the Gaussian Approximation
411(1)
4 Moments of Probability Distributions
412(5)
4.1 Mean Value or Expectation Value
412(1)
4.2 Variance and Mean Square Deviation
412(1)
4.3 Bienayme--Tchebycheff Inequality
413(1)
4.4 Experimental Verification of a Probability Law
413(1)
Exercises
414(3)
Appendix B. Dirac Distribution, Fourier Transformation 417(12)
1 Dirac Distribution, or δ ``Function''
417(3)
1.1 Definition of δ(x)
417(1)
1.2 Examples of Functions Which Tend to δ(x)
418(1)
1.3 Properties of δ(x)
419(1)
2 Distributions
420(2)
2.1 The Space S
420(1)
2.2 Linear Functionals
420(1)
2.3 Derivative of a Distribution
421(1)
2.4 Convolution Product
422(1)
3 Fourier Transformation
422(7)
3.1 Definition
422(1)
3.2 Fourier Transform of a Gaussian
423(1)
3.3 Inversion of the Fourier Transformation
423(1)
3.4 Parseval--Plancherel Theorem
424(1)
3.5 Fourier Transform of a Distribution
425(1)
3.6 Uncertainty Relation
426(1)
Exercises
427(2)
Appendix C. Operators in Infinite-Dimensional Spaces 429(6)
1 Matrix Elements of an Operator
429(1)
2 Continuous Bases
430(5)
Appendix D. The Density Operator 435(14)
1 Pure States
436(3)
1.1 A Mathematical Tool: the Trace of an Operator
436(1)
1.2 The Density Operator of Pure States
437(1)
1.3 Alternative Formulation of Quantum Mechanics for Pure States
438(1)
2 Statistical Mixtures
439(2)
2.1 A Particular Case: an Unpolarized Spin-1/2 System
439(1)
2.2 The Density Operator for Statistical Mixtures
440(1)
3 Examples of Density Operators
441(3)
3.1 The Micro-Canonical and Canonical Ensembles
441(1)
3.2 The Wigner Distribution of a Spinless Point Particle
442(2)
4 Entangled Systems
444(5)
4.1 Reduced Density Operator
444(1)
4.2 Evolution of a Reduced Density Operator
444(1)
4.3 Entanglement and Measurement
445(1)
Further Reading
446(1)
Exercises
446(3)
Solutions to the Exercises 449(54)
Index 503