Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches

(Federal University of Rio Grande do Norte, Brazil)
  • Formāts: 462 pages
  • Izdošanas datums: 15-Jun-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000609813
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 462 pages
  • Izdošanas datums: 15-Jun-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000609813

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Main features: i) A different approach for teaching Quantum Mechanics encompassing old quantum mechanics, matrix mechanics and wave mechanics in a historical perspective which helps to consolidate most important concepts of Quantum Mechanics; ii) Original information from the most important papers of Quantum Mechanics; iii) Derivation of all important equations of Quantum Mechanics, for example, Heisenbergs uncertainty principle, de Broglies wave-particle duality, Schrödingers wave equation, etc., showing their interrelations through Diracs equations and other applications of matrix and wave mechanics; iv) Comprehensive mathematical support for the understanding of Quantum Mechanics; derivation of all equations make reading easier; v) The illustrations of the book cover examples, exercises and do-it-yourself activities; vi) Fundamentals of Fortran and numerical calculation along with the source codes for numerical solutions of several mathematical and quantum problems. All source codes are in the authors site: (https://www.fortrancodes.com/); vii) Chapters devoted to linear algebra and differential equations applied to quantum mechanics and their numerical solutions; viii) Complete solution for the one-electron and two-electron problems using Schrödingers time independent equation along with their source codes.
Part 1: Computational and Mathematical Support
1. Basics of Fortran
2.
Basics of Numerical Calculation and Series
3. Linear Algebra for Quantum
Mechanics
4. Differential Equations for Quantum Mechanics Part 2: Old Quantum
Mechanics, Matrix Mechanics and Wave Mechanics
5. Absorption/Emission
Spectroscopy and Spectral Lines
6. Black-body Radiation, Einstein and
Plancks Law
7. Bohr, Sommerfeld and Old Quantum Mechanics
8. Heisenbergs
Matrix Quantum Mechanics
9. Wave Packet and de Broglies Wave-particle
Duality
10. Schrödingers Wave Quantum Mechanics
11. Applications of Matrix
and Wave Quantum Mechanics
12. Landé, Pauli, Dirac and Spin
13. Boltzmann and
Fermi-Dirac Statistics Part 3: Schrödinger's Solutions to One and
Two-electron Problems
14. One-particle Quantum Harmonic Oscillator
15.
Particle in a Box
16. Particle in a Circular Motion and Angular Momentum
17.
Hydrogen-like Atom and Atomic Orbitals
18. Helium Atom, Variational Method
and Perturbation Theory
Caio Lima Firme, PhD in Theoretical Chemistry (Doctor of Science) and since 2006 he has been working with Quantum Theory of Atoms in Molecules (QTAIM), Density Functional Theory (DFT), among other methods applied to Organic Chemistry and Inorganic Chemistry. Some equations he developed were the D3BIA aromaticity index, the stability parameters of cyclophanes and the Local Potential Energy Density (LPE) for the analysis of intermolecular interactions and chemical bonds. Some of his important contributions to QTAIM are the linear relation between the delocalization index and formal bond order and the hydrogen-hydrogen bonding applied to alkanes and alkenes. He is Assistant Professor at Federal University of Rio Grande do Norte and had taught Quantum Mechanics and Quantum Chemistry at UFRN. He has one patent and 37 papers so far. Recently, he has written the book Introductory Organic Chemistry and Hydrocarbons: A Physical Chemistry Approach, published by CRC Press/Taylor & Francis Group.