Preface |
|
xiii | |
About the Author |
|
xv | |
|
SECTION I Non-Relativistic Theory |
|
|
|
1 Quantum Mechanics Basic Concepts |
|
|
3 | (38) |
|
1.1 Inadequacies of Classical Mechanics |
|
|
3 | (2) |
|
|
5 | (2) |
|
1.3 Wave Function Statistical Interpretation |
|
|
7 | (2) |
|
1.4 Uncertainty of Two Types of Measurements |
|
|
9 | (1) |
|
1.5 Superposition Principle Generalized Formulation |
|
|
10 | (1) |
|
1.6 Operators of Physical Quantities |
|
|
11 | (3) |
|
1.6.1 Expectation Value (Observable) and Operator of a Physical Quantity |
|
|
11 | (2) |
|
1.6.2 Properties of Operators |
|
|
13 | (1) |
|
1.7 Linear Self-Adjoint (Hermitian) Operators |
|
|
14 | (6) |
|
1.7.1 Translation Operator |
|
|
18 | (2) |
|
1.8 Eigenfunction and Eigenvalue |
|
|
20 | (3) |
|
|
21 | (2) |
|
1.9 Properties of Eigenfunctions of Hermitian Operators |
|
|
23 | (7) |
|
1.10 Theorem on the Commutation of Operators and Their Physical Application |
|
|
30 | (4) |
|
1.11 Heisenberg Uncertainty Relations for Arbitrary Observables |
|
|
34 | (1) |
|
1.12 Limiting Transition from Quantum Mechanics to Classical Mechanics |
|
|
35 | (6) |
|
|
41 | (28) |
|
|
41 | (12) |
|
2.1.1 Particle in an Infinite Deep Potential Well |
|
|
44 | (4) |
|
2.1.2 A Particle in an Infinitely High Potential Well |
|
|
48 | (2) |
|
2.1.3 Coordinate Representation Delta Potential |
|
|
50 | (3) |
|
2.2 Time-Dependent Operators |
|
|
53 | (16) |
|
2.2.1 Classical Equation of Motion |
|
|
53 | (3) |
|
2.2.2 Quantum-Mechanical Poisson Bracket and Quantum Correspondence Principle |
|
|
56 | (1) |
|
2.2.3 Quantum Mechanical Equation of Motion |
|
|
57 | (2) |
|
2.2.4 Postulates of Quantum Mechanics |
|
|
59 | (1) |
|
2.2.5 Velocity and Acceleration of a Charged Particle in an Electromagnetic Field |
|
|
60 | (1) |
|
2.2.6 Probability Density and Probability Current Density |
|
|
61 | (2) |
|
2.2.7 Current Density of a Charged Particle in an Electromagnetic Field |
|
|
63 | (1) |
|
2.2.8 Change with Time of a Wave Packet |
|
|
64 | (5) |
|
|
69 | (44) |
|
|
69 | (2) |
|
|
71 | (2) |
|
3.3 Heisenberg Uncertainty Relation |
|
|
73 | (4) |
|
3.4 Momentum Representation |
|
|
77 | (9) |
|
3.4.1 Momentum Representation of Particle in Triangular Potential Well |
|
|
80 | (2) |
|
3.4.2 Momentum Representation of Particle in Delta Potential Well |
|
|
82 | (4) |
|
3.4.3 Momentum Representation of an Operator in Matrix Form |
|
|
86 | (1) |
|
3.5 Particle Hamiltonian in a Potential Field |
|
|
86 | (3) |
|
3.5.1 Hamilton Function Operator and Ehrenfest Theorem |
|
|
87 | (2) |
|
3.6 Angular Momentum Operator |
|
|
89 | (5) |
|
3.6.1 Infinitesimal Rotation Operator |
|
|
89 | (1) |
|
3.6.2 Angular Momentum Operator |
|
|
90 | (1) |
|
3.6.3 Commutation Relations of Angular Momentum Operators |
|
|
91 | (1) |
|
3.6.4 Eigenvalue and Eigenfunction of z-Component Angular Momentum Operator |
|
|
92 | (2) |
|
3.7 Square of Angular Momentum Operator |
|
|
94 | (5) |
|
3.7.1 Square of Angular Momentum Operator Commutation Relations |
|
|
94 | (2) |
|
3.7.2 Square of Angular Momentum Operator Eigenvalue in the Dirac Representation |
|
|
96 | (3) |
|
3.8 Square of Angular Momentum Operator Eigenstates |
|
|
99 | (14) |
|
3.8.1 Legendre Polynomials |
|
|
99 | (3) |
|
3.8.1.1 Asymptotic Legendre Polynomials |
|
|
102 | (2) |
|
3.8.2 Angular Momentum Eigenstates |
|
|
104 | (2) |
|
3.8.3 Dirac Representation Eigenstates |
|
|
106 | (1) |
|
3.8.4 Matrix Representation and Finite Rotations Eigenstates |
|
|
107 | (6) |
|
|
113 | (34) |
|
4.1 Infinitesimal Symmetry Transformation Generator |
|
|
113 | (1) |
|
4.2 Total Angular Momentum Justification |
|
|
113 | (1) |
|
4.3 Addition of Two Angular Momenta |
|
|
114 | (10) |
|
4.3.1 Clebsch-Gordan Coefficients |
|
|
115 | (1) |
|
4.3.1.1 Other Representation of Clebsch-Gordan Coefficients |
|
|
116 | (1) |
|
4.3.1.2 Clebsch-Gordan Coefficients Recursion Relations |
|
|
117 | (1) |
|
|
118 | (6) |
|
|
124 | (8) |
|
|
125 | (4) |
|
|
129 | (3) |
|
4.5 Spin of a System of Two Particles |
|
|
132 | (4) |
|
|
136 | (8) |
|
4.6.1 Finite Rotation Operator About Some Angle Along Some Axis |
|
|
136 | (1) |
|
4.6.2 Finite Rotation Operator for Spinor One-Half |
|
|
136 | (2) |
|
4.6.3 Finite Rotation Operator for Spinor One-Half General Case |
|
|
138 | (2) |
|
4.6.4 Rotation Operator Matrix |
|
|
140 | (3) |
|
4.6.4.1 Spherical Harmonics Connection |
|
|
143 | (1) |
|
4.7 Irreducible Tensor Operators |
|
|
144 | (3) |
|
4.7.1 Wigner-Eckart Theorem |
|
|
144 | (3) |
|
5 One-Dimensional Motion General Principles |
|
|
147 | (16) |
|
5.1 One-Dimensional Motion General Principles |
|
|
147 | (2) |
|
|
149 | (2) |
|
5.3 Particle in a One-Dimensional Finite Square Well Potential |
|
|
151 | (6) |
|
|
157 | (1) |
|
5.5 Particle in a Square Potential Barrier |
|
|
158 | (5) |
|
|
163 | (44) |
|
6.1 Linear Harmonic Equation |
|
|
163 | (1) |
|
6.2 Harmonic Oscillator Eigenstates and Eigenvalues |
|
|
163 | (13) |
|
6.2.1 Hermite Polynomial and Harmonic Oscillator Eigenfunction |
|
|
166 | (1) |
|
6.2.1.1 Hermite Polynomials |
|
|
166 | (2) |
|
6.2.1.2 Hermite Polynomials Integral Representation |
|
|
168 | (1) |
|
6.2.1.3 Harmonic Oscillator Eigenfunction and Normalization Condition |
|
|
168 | (1) |
|
6.2.1.4 Hermite Polynomials Orthogonality Condition |
|
|
169 | (7) |
|
6.3 Motion in a Central Field |
|
|
176 | (9) |
|
6.3.1 Radial Schrodinger Equation |
|
|
176 | (2) |
|
6.3.2 Radial Wave Function Qualitative Investigation |
|
|
178 | (4) |
|
6.3.3 Continuous Spectra Radial Wave Functions |
|
|
182 | (1) |
|
|
183 | (1) |
|
6.3.4 Delta Potential Radial Solution |
|
|
184 | (1) |
|
6.4 Motion in a Coulombic Field |
|
|
185 | (22) |
|
6.4.1 Hydrogen Atom (Spherical Coordinates) |
|
|
185 | (3) |
|
6.4.2 Eigenvalue and Eigenfunction |
|
|
188 | (2) |
|
6.4.2.1 Hydrogen Atom's Wave Function |
|
|
190 | (1) |
|
6.4.2.2 Laguerre Polynomials Integral Representation |
|
|
191 | (1) |
|
6.4.2.3 Eigenvalue and Degeneracy |
|
|
192 | (1) |
|
6.4.3 Hydrogen Atom (Parabolic Coordinates) |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (1) |
|
6.4.4 Spherical Oscillator (Spherical Coordinates) |
|
|
197 | (4) |
|
6.4.5 Particle in an Infinite Deep Spherical Symmetric Potential Well |
|
|
201 | (1) |
|
6.4.6 Kepler Problem in Two Dimensions |
|
|
202 | (5) |
|
|
207 | (28) |
|
7.1 Matrix Wave Functions and Operator Representation |
|
|
207 | (1) |
|
7.2 Properties of Matrices |
|
|
208 | (2) |
|
7.3 Rule on Matrix Operations |
|
|
210 | (2) |
|
7.4 Action of an Operator on a Wave Function |
|
|
212 | (1) |
|
7.5 Mean Value of an Operator |
|
|
213 | (1) |
|
7.6 Eigenstate and Eigenvalue Problem |
|
|
213 | (2) |
|
7.7 Unitary Transformation in State Vector Space |
|
|
215 | (4) |
|
|
216 | (1) |
|
7.7.2 Matrix Element of a Transformation Operator |
|
|
217 | (1) |
|
7.7.3 Invariance of the Trace of a Matrix Under Unitary Transformations |
|
|
218 | (1) |
|
7.8 Schrodinger and Heisenberg Representations |
|
|
219 | (1) |
|
7.9 Interaction Representation |
|
|
220 | (1) |
|
7.10 Energy Representation |
|
|
221 | (14) |
|
7.10.1 Evolution Operator |
|
|
223 | (1) |
|
7.10.2 Oscillator in the Energy Representation |
|
|
224 | (1) |
|
7.10.2.1 Matrix Element of the Oscillator Coordinate |
|
|
224 | (3) |
|
7.10.2.2 Hamiltonian Operator Eigenvalue |
|
|
227 | (1) |
|
7.10.2.3 Harmonic Oscillator Ground-State Eigenfunction |
|
|
227 | (2) |
|
7.10.2.4 Quantization of Operators |
|
|
229 | (6) |
|
8 Quantum Mechanics Approximate Methods |
|
|
235 | (42) |
|
8.1 Variational Principle |
|
|
235 | (3) |
|
|
235 | (3) |
|
8.2 Case of the Hydrogen Atom |
|
|
238 | (1) |
|
|
239 | (7) |
|
8.3.1 Stationary Perturbation Theory - Non-Degenerate Level Case |
|
|
239 | (7) |
|
8.4 Perturbation Theory - Case of a Degenerate Level |
|
|
246 | (15) |
|
|
249 | (1) |
|
|
250 | (2) |
|
8.4.2 Stark Effect (Spherical Coordinates) |
|
|
252 | (6) |
|
8.4.3 Stark Effect (Parabolic Coordinates) |
|
|
258 | (3) |
|
8.5 Time-Dependent Perturbation Theory |
|
|
261 | (7) |
|
8.5.1 Transition Probability |
|
|
263 | (2) |
|
8.5.2 Adiabatic Approximation |
|
|
265 | (3) |
|
8.6 Time-Independent Perturbation |
|
|
268 | (1) |
|
8.7 Time and Energy Uncertainty Relation |
|
|
268 | (2) |
|
8.8 Density of Final State |
|
|
270 | (1) |
|
|
271 | (1) |
|
8.9 Transition Probability-Continuous Spectrum |
|
|
271 | (3) |
|
8.9.1 Harmonic Perturbation |
|
|
272 | (2) |
|
8.10 Transition in a Continuous Spectrum Due to a Constant Perturbation |
|
|
274 | (3) |
|
|
277 | (16) |
|
9.1 System of Indistinguishable Particles |
|
|
277 | (2) |
|
9.2 Interacting System of Particles |
|
|
279 | (1) |
|
9.3 System of Two Electrons |
|
|
280 | (13) |
|
9.3.1 Exchange Interaction |
|
|
285 | (1) |
|
9.3.2 Two Electrons in an Infinite Square Potential Well - Heisenberg Exchange Interaction |
|
|
285 | (8) |
|
10 Approximate Method for the Helium Atom |
|
|
293 | (6) |
|
10.1 The State of the Helium Atom |
|
|
293 | (3) |
|
10.2 Self-Consistent Field Method |
|
|
296 | (3) |
|
11 Approximate Method for the Hydrogen Molecule |
|
|
299 | (6) |
|
11.1 Vibrational and Rotational Levels of Diatomic Molecules |
|
|
303 | (2) |
|
|
305 | (50) |
|
12.1 Scattering Cross Section and Elastic Scattering Amplitude |
|
|
305 | (6) |
|
12.1.1 Relation Between the Laboratory and Center-of-Mass Systems |
|
|
308 | (3) |
|
12.2 Method of Partial Waves |
|
|
311 | (6) |
|
12.3 S-Scattering of Slow Particles |
|
|
317 | (2) |
|
12.4 Resonance Scattering |
|
|
319 | (3) |
|
12.5 The Unitary Scattering Conditions |
|
|
322 | (4) |
|
|
322 | (4) |
|
12.6 Time-Reversal Symmetry |
|
|
326 | (1) |
|
12.6.1 Inversion Operator and Reciprocity Theorem |
|
|
326 | (1) |
|
12.7 Schrodinger Equation Green's Function |
|
|
327 | (2) |
|
|
329 | (18) |
|
12.8.1 Scattering of Fast Charged Particles on Atoms |
|
|
329 | (1) |
|
12.8.1.1 Scattering Amplitude in Momentum Representation |
|
|
329 | (5) |
|
12.8.2 Perturbation Theory Method Approach for Born Approximation |
|
|
334 | (5) |
|
|
339 | (1) |
|
12.8.2.2 Spherical Potential Well |
|
|
340 | (2) |
|
12.8.2.3 Coulomb Interaction and Rutherford's Formula |
|
|
342 | (4) |
|
12.8.2.4 Lippman Schwinger Equation, ID Delta Potential |
|
|
346 | (1) |
|
12.9 Elastic and Inelastic Collisions |
|
|
347 | (3) |
|
12.9.1 Fast and Slow Particle Total Cross Section |
|
|
347 | (3) |
|
12.10 Wentzel-Kramer-Brillouin (WKB) Method |
|
|
350 | (2) |
|
12.10.1 Motion in a Central Symmetric Field |
|
|
350 | (2) |
|
12.11 Scattering of Indistinguishable Particles |
|
|
352 | (3) |
|
|
355 | (28) |
|
13.1 Lee-Low-Pines (LLP) Technique |
|
|
355 | (12) |
|
13.1.1 Lee-Low-Pines (LLP) Bulk Polaron |
|
|
355 | (6) |
|
13.1.2 Lee-Low-Pines (LLP) Surface and Slow Moving Polaron |
|
|
361 | (5) |
|
13.1.3 Lee-Low-Pines (LLP) Surface and Fast Moving Polaron |
|
|
366 | (1) |
|
13.2 Polaron in a Quantum Wire |
|
|
367 | (4) |
|
13.3 Polaronic Exciton and Haken Exciton |
|
|
371 | (12) |
|
SECTION II Relativistic Theory |
|
|
|
|
383 | (16) |
|
|
383 | (8) |
|
14.1.1 Spin and Spin Operator Commutation Relations |
|
|
385 | (2) |
|
|
387 | (1) |
|
14.1.3 Derivation of Pauli Matrices |
|
|
388 | (3) |
|
|
391 | (8) |
|
14.2.1 Lorentz Transformation and Spinor Transformation |
|
|
392 | (2) |
|
14.2.2 Arbitrary Spinor Transformation |
|
|
394 | (5) |
|
|
399 | (10) |
|
15.1 Probability and Charge Densities |
|
|
402 | (1) |
|
15.2 Motion in an Electromagnetic Field |
|
|
403 | (1) |
|
15.3 Spinless Charge Particle in a Coulombic Field |
|
|
404 | (2) |
|
15.4 Non-Relativistic Limiting Equation |
|
|
406 | (3) |
|
|
409 | (4) |
|
17 Probability and Current Densities |
|
|
413 | (2) |
|
18 Electron Spin in the Dirac Theory |
|
|
415 | (4) |
|
19 Free Electron State with Defined Momentum-Positronium Motion |
|
|
419 | (6) |
|
19.1 Stationary Dirac Equation |
|
|
419 | (6) |
|
19.1.1 Dirac Hypothesis-Hole Theory |
|
|
423 | (2) |
|
|
425 | (18) |
|
20.1 Electron Motion in an External Electromagnetic Field |
|
|
425 | (12) |
|
20.1.1 Quasi-Relativistic Approximation-Pauli Equation |
|
|
426 | (4) |
|
20.1.2 Second-Order Relativistic Correction |
|
|
430 | (1) |
|
20.1.2.1 Spin-Orbital Interaction |
|
|
430 | (1) |
|
20.1.2.2 Fine Structure Levels |
|
|
431 | (2) |
|
20.1.2.3 Fine Structure Effect |
|
|
433 | (4) |
|
20.2 Bound Electronic States in a Coulombic Field |
|
|
437 | (6) |
|
21 Motion in a Magnetic Field |
|
|
443 | (24) |
|
|
443 | (3) |
|
21.2 Spin Precession in a Magnetic Field |
|
|
446 | (6) |
|
21.3 Theory of the Zeeman Effect |
|
|
452 | (11) |
|
21.3.1 Russell-Saunders Coupling |
|
|
454 | (6) |
|
21.3.2 Weak Field Limiting Case - Zeeman Effect |
|
|
460 | (1) |
|
21.3.3 Strong Field for Exceedingly Small Spin-Orbit Interaction - Paschen-Back Effect |
|
|
461 | (1) |
|
|
462 | (1) |
|
21.4 Atomic Paramagnetism and Diamagnetism |
|
|
463 | (4) |
|
SECTION III Appendix: Special Functions |
|
|
|
|
467 | (8) |
|
22.1 First Kind Euler Integral-Beta Function |
|
|
467 | (1) |
|
22.2 Gamma Function (Second Kind Euler Integral) |
|
|
468 | (2) |
|
22.3 Gamma Function Analytic Continuation |
|
|
470 | (2) |
|
22.4 Hankel Integral Representations |
|
|
472 | (1) |
|
22.5 Reflection or Complementary Formula |
|
|
473 | (2) |
|
23 Confluent Hypergeometric Functions |
|
|
475 | (6) |
|
23.1 Classical Gauss Confluent Hypergeometric Function |
|
|
475 | (2) |
|
23.2 Euler Integral Representation: Mellin-Barnes Integral Representation |
|
|
477 | (1) |
|
23.3 Confluent Hypergeometric Function - Kummer Function |
|
|
478 | (3) |
|
|
481 | (18) |
|
24.1 Cylindrical Function of the First Kind |
|
|
481 | (1) |
|
|
482 | (1) |
|
|
483 | (1) |
|
24.4 Modified Bessel Function |
|
|
483 | (1) |
|
24.5 Modified Bessel Function with Imaginary Argument |
|
|
484 | (1) |
|
24.6 Bessel Function of the First Kind Integral Formula |
|
|
485 | (3) |
|
24.7 Neumann Function Integral Formula |
|
|
488 | (1) |
|
24.8 Hankel Function Integral Formula |
|
|
489 | (3) |
|
|
492 | (7) |
|
25 Orthogonal Polynomials |
|
|
499 | (32) |
|
25.1 Orthogonal Polynomials General Properties |
|
|
499 | (1) |
|
25.2 Transforming Confluent Hypergeometric Function into a Polynomial |
|
|
500 | (2) |
|
|
502 | (2) |
|
25.4 Jacobi Polynomial Generating Function |
|
|
504 | (2) |
|
25.5 Gegenbauer Polynomials |
|
|
506 | (2) |
|
25.6 Gegenbauer Polynomial Generating Function |
|
|
508 | (1) |
|
25.7 First Kind TschebychefF Polynomial |
|
|
509 | (2) |
|
25.8 Generating Function of the First Kind TschebychefF Polynomial |
|
|
511 | (1) |
|
25.9 TschebychefF Polynomial of the Second Kind |
|
|
512 | (2) |
|
25.10 Generating Function of the Second Kind Tschebycheff Polynomial |
|
|
514 | (1) |
|
25.11 Legendre Polynomials |
|
|
515 | (1) |
|
25.12 Legendre Polynomial Generating Function |
|
|
515 | (2) |
|
25.13 Legendre Polynomials Integral Representation |
|
|
517 | (1) |
|
25.14 Associated Legendre Polynomials |
|
|
518 | (2) |
|
25.15 Associated Legendre Polynomials Integral Representation |
|
|
520 | (1) |
|
25.16 Spherical Functions |
|
|
520 | (4) |
|
25.17 Laguerre Polynomials |
|
|
524 | (1) |
|
25.18 Associated Laguerre Polynomial Generating Function |
|
|
525 | (3) |
|
25.19 Hermite Polynomials |
|
|
528 | (1) |
|
25.20 Hermite Polynomial Generating Function |
|
|
528 | (3) |
References |
|
531 | (2) |
Index |
|
533 | |