Atjaunināt sīkdatņu piekrišanu

Quantum Oscillations: A simple principle underlying important aspects of physics 1st ed. 2021 [Mīkstie vāki]

  • Formāts: Paperback / softback, 176 pages, height x width: 235x155 mm, weight: 454 g, 48 Illustrations, color; 84 Illustrations, black and white; XII, 176 p. 132 illus., 48 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Physics 985
  • Izdošanas datums: 25-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030705269
  • ISBN-13: 9783030705268
  • Mīkstie vāki
  • Cena: 64,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 76,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 176 pages, height x width: 235x155 mm, weight: 454 g, 48 Illustrations, color; 84 Illustrations, black and white; XII, 176 p. 132 illus., 48 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Physics 985
  • Izdošanas datums: 25-May-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030705269
  • ISBN-13: 9783030705268

This book addresses various aspects of physics, using Quantum oscillation (QO) as a common denominator. QO plays an important role in many aspects of physics, such as the Weinberg angle, Caribbo angle, neutrino oscillation, K0 oscillation and CP violation, mass generation by the Higgs field, hadron mass pattern, lepton anomalous magnetic moment, spin precession, hydrogen HI line, etc.

Usually, these subjects are taught separately. As such, this book allows readers to learn about a wide range of physics subjects in a unified manner and to gain farther-reaching perspectives. The readers may be surprised at the fact that different looking physics are actually closely related with each other.  They will also find essential information on quantum mechanics at the heart from many concrete examples.  Though the book is mainly intended for graduate students of particle, nuclear and astrophysics, undergraduate students and researchers will also benefit from the content.

1 Basics of the Quantum Oscillation
1(8)
1.1 Introduction
1(1)
1.2 State Mixing and Quantum Oscillation
1(8)
1.2.1 Transition
2(1)
1.2.2 Mass Eigenstate
3(2)
1.2.3 Quantum Oscillation
5(4)
Part I Electromagnetic Interactions
2 Motion of Electron Spin in Magnetic Fields
9(18)
2.1 Introduction
9(1)
2.2 Spin-1/2 and Magnetic Field
9(1)
2.3 The Pauli Equation
9(3)
2.3.1 Empirical Derivation of the Pauli Equation
9(1)
2.3.2 Derivation of the Pauli Equation from the Dirac Equation
10(1)
2.3.3 Physical Meaning of the Pauli Equation
11(1)
2.4 Spin Motion in the Magnetic Field →B = (0, 0, B); the Simplest Case
12(2)
2.4.1 Energy Eigenstate
12(1)
2.4.2 Spin Precession
13(1)
2.5 Spin Motion in Magnetic Field →B = (B, 0, 0)
14(3)
2.5.1 Energy Eigenstates
15(1)
2.5.2 Oscillation and Precession
16(1)
2.6 Spin Motion in Magnetic Field →B = (0, B, 0)
17(2)
2.6.1 Energy Eigenstates
18(1)
2.6.2 Oscillation and Precession
18(1)
2.7 Spin Motion in an Arbitrary Magnetic Field: B = (Bx, By, Bz)
19(4)
2.7.1 Energy Eigenstate
21(1)
2.7.2 Oscillation and Precession
22(1)
2.8 If Electron Mass is Included
23(2)
Reference
25(2)
3 Hydrogen Hyperfine Splitting and HI Line
27(12)
3.1 Introduction
27(1)
3.2 Spin Structure of the Hydrogen Atom
27(6)
3.2.1 Oscillation Between | ↑↓> and | ↑↓> States
32(1)
3.3 Hydrogen Magnetic Moment Under External Magnetic Field
33(4)
3.4 Hydrogen 21 cm Line
37(1)
References
38(1)
4 Anomalous Magnetic Moment
39(8)
4.1 Introduction
39(1)
4.2 Helicity Conservation
39(7)
4.2.1 Anomalous Magnetic Moment
42(1)
4.2.2 Measurements
43(3)
References
46(1)
5 Positronium
47(10)
5.1 Introduction
47(2)
5.2 HK: e+ -e- Binding State by Electrostatic Potential
49(5)
5.2.1 HM: MM-MM Interactions
49(2)
5.2.2 HA: Pair Annihilation and Creation
51(1)
5.2.3 HM + HA: Both Effects
52(2)
Reference
54(3)
Part II Higgs Field
6 Weinberg Angle
57(16)
6.1 Introduction
57(1)
6.2 General Formula of Electromagnetic and Weak Interactions
57(6)
6.2.1 Correspondence to Photon and Z0
61(2)
6.3 The Origin of the Vector Boson Transitions; Higgs Field
63(3)
6.4 Chirality Dependence of the Weak Interactions
66(1)
6.5 Test of the Electroweak Theory
67(4)
6.5.1 Measurements of sin2 θw
68(1)
6.5.2 Test of the Electroweak Theory
69(2)
References
71(2)
7 Fermion Mass and Chirality Oscillation
73(6)
7.1 Introduction
73(1)
7.2 Chirality
73(1)
7.3 Dirac Equation as Chirality Transition Equation
74(2)
7.4 Decay Effect
76(3)
8 Quark Mass, Cabibbo Angle and CKM Mixing Matrix
79(18)
8.1 Introduction
79(1)
8.2 Four-Quark System and Cabibbo Angle, θC
79(7)
8.2.1 Quark Flavor Oscillation
84(1)
8.2.2 Uncertainty Principle
85(1)
8.3 Six-Quark System
86(8)
8.3.1 Measurement of the CKM Matrix Elements
88(4)
8.3.2 Transition Amplitude Gαβ
92(1)
8.3.3 Quark Flavor Oscillation
93(1)
References
94(3)
Part III Weak Interactions
9 K0-K0 Oscillation and CP Violation
97(16)
9.1 Introduction
97(1)
9.2 K0-K0 Oscillation and Prediction of the Charm Quark Mass
97(7)
9.3 Six-Quark System and CP Violation
104(4)
9.3.1 K0 -- K0 Oscillation of Six-Quark System
106(1)
9.3.2 Oscillation of K0 CP Eigenstate
107(1)
9.4 Discovery of CP Violation and Measurement of α
108(2)
References
110(3)
Part IV Strong Interactions
10 Quark Structure of Mesons
113(18)
10.1 Introduction
113(1)
10.2 u, d, s-Quark Masses
113(2)
10.3 π+ -ρ+ Mass Difference
115(5)
10.4 Structure of ρ0, ω and φ
120(6)
10.4.1 Mixing Between |uu> and |dd>
120(2)
10.4.2 Mixing Between |ss> and |uu>, |dd> Systems
122(3)
10.4.3 Experimental Confirmation of the Vector Meson Structure
125(1)
10.5 Structure of π0, η and η'
126(2)
10.6 Color Structure of Meson
128(1)
References
129(2)
11 Quark Structure of Baryons
131(14)
11.1 Introduction
131(1)
11.2 Totally Antisymmetric State
131(1)
11.3 Δ++ Baryon
132(4)
11.3.1 Δ+ Baryon
134(2)
11.4 Spin-1/2 Baryon
136(3)
11.4.1 Why Spin-1/2 (uuu) Baryon Does Not Exist?
136(1)
11.4.2 Quark Structure of Proton
136(1)
11.4.3 Λ, Σ0 and Σ0*
137(2)
11.5 Isospin
139(6)
Part V Unknown Origin
12 Neutrino Oscillation: Relativistic Oscillation of Three-Flavor System
145(16)
12.1 Introduction
145(1)
12.2 Two-Flavor Oscillation
145(7)
12.2.1 Neutrino Transition Amplitudes
146(1)
12.2.2 Oscillation
147(1)
12.2.3 Relativistic Oscillation Probability
148(3)
12.2.4 Another Way to Derive Relativistic Neutrino Oscillation
151(1)
12.2.5 A Relation Between Transition Amplitudes and Neutrino Flavor Mass
151(1)
12.3 Three-Flavor Neutrino Oscillation
152(4)
12.4 Measurements of Oscillation Parameters
156(4)
12.4.1 θ23 and Δ1 23
157(1)
12.4.2 θ12 and Δm2 12
157(1)
12.4.3 θ13
158(1)
12.4.4 δ
158(1)
12.4.5 Summary of the Measurements
158(2)
References
160(1)
Appendix A Summary of Parameters and Formulas 161(4)
Appendix B 165(6)
Appendix C 171(2)
Index 173
The author, Dr. Fumihiko Suekane, is a professor of Research Center for Neutrino Science, Tohoku University, Japan. He is an elementary particle physicist. He contributed to the discovery of the reactor neutrino oscillation as a core member of the KamLAND experiment. He was awarded the Koshiba prize and Breakthrough group prize for the achievement. Recently he suceeded to measure the last neutrino mixing angle Theta-13 He is also interested in teaching intuitive and concrete particle physics and have written some text books. He won Blaise Pascal Chairs (BPC) by Promotion of Neutrino Science and was invited as a guest researcher at Laboratoire AstroParticule & Cosmologie, Paris, in 2017- 2018. This book is an outcome of his activities as BPC while he was staying at APC lab.