|
1 Covariant Fluid Models for Magnetized Plasmas |
|
|
1 | (40) |
|
1.1 Covariant Description of a Magnetostatic Field |
|
|
1 | (10) |
|
|
2 | (2) |
|
1.1.2 Projection Tensors g and g |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.1.4 Linear and Nonlinear Response Tensor |
|
|
8 | (3) |
|
1.2 Covariant Cold Plasma Model |
|
|
11 | (7) |
|
1.2.1 Fluid Description of a Cold Plasma |
|
|
11 | (2) |
|
1.2.2 Linear Response Tensor: Cold Plasma |
|
|
13 | (1) |
|
|
14 | (2) |
|
1.2.4 Cold Plasma Dielectric Tensor |
|
|
16 | (2) |
|
1.3 Inclusion of Streaming Motions |
|
|
18 | (5) |
|
1.3.1 Lorentz Transformation to Streaming Frame |
|
|
18 | (3) |
|
1.3.2 Dielectric Tensor for a Streaming Distribution |
|
|
21 | (1) |
|
1.3.3 Cold Counterstreaming Electrons and Positrons |
|
|
22 | (1) |
|
1.4 Relativistic Magnetohydrodynamics |
|
|
23 | (9) |
|
1.4.1 Covariant Form of the MHD Equations |
|
|
24 | (2) |
|
1.4.2 Derivation from Kinetic Theory |
|
|
26 | (1) |
|
1.4.3 Generalized Ohm's Law |
|
|
27 | (1) |
|
1.4.4 Two-Fluid Model for a Pair Plasma |
|
|
28 | (1) |
|
|
29 | (3) |
|
|
32 | (9) |
|
|
32 | (2) |
|
1.5.2 Generalizations of QFT |
|
|
34 | (1) |
|
1.5.3 Quasi-classical Models for Spin |
|
|
35 | (1) |
|
1.5.4 Spin-Dependent Cold Plasma Response |
|
|
36 | (2) |
|
|
38 | (3) |
|
2 Response Tensors for Magnetized Plasmas |
|
|
41 | (64) |
|
2.1 Orbit of a Spiraling Charge |
|
|
42 | (6) |
|
2.1.1 Orbit of a Spiraling Charge |
|
|
42 | (2) |
|
2.1.2 Characteristic Response Due to a Spiraling Charge |
|
|
44 | (1) |
|
2.1.3 Expansion in Bessel Functions |
|
|
45 | (1) |
|
2.1.4 Gyroresonance Condition |
|
|
46 | (2) |
|
2.2 Perturbation Expansions |
|
|
48 | (3) |
|
2.2.1 Perturbation Expansion of the 4-Current |
|
|
48 | (2) |
|
2.2.2 Small-Gyroradius Approximation |
|
|
50 | (1) |
|
2.3 General Forms for the Linear Response 4-Tensor |
|
|
51 | (9) |
|
2.3.1 Forward-Scattering Method for a Magnetized Plasma |
|
|
51 | (2) |
|
2.3.2 Forward-Scattering Form Summed over Gyroharmonics |
|
|
53 | (2) |
|
2.3.3 Vlasov Method for a Magnetized Plasma |
|
|
55 | (2) |
|
2.3.4 Vlasov Form for the Linear Response Tensor |
|
|
57 | (2) |
|
2.3.5 Vlasov Form Summed over Gyroharmonics |
|
|
59 | (1) |
|
2.4 Response of a Relativistic Thermal Plasma |
|
|
60 | (9) |
|
2.4.1 Trubnikov's Response Tensor for a Magnetized Plasma |
|
|
60 | (4) |
|
2.4.2 Forward-Scattering Form of Trubnikov's Tensor |
|
|
64 | (1) |
|
2.4.3 Other Forms of (k) for a Juttner Distribution |
|
|
65 | (1) |
|
2.4.4 Relativistic Plasma Dispersion Functions (RPDFs) |
|
|
66 | (1) |
|
2.4.5 Strictly-Perpendicular Juttner Distribution |
|
|
67 | (2) |
|
2.5 Weakly Relativistic Thermal Plasma |
|
|
69 | (13) |
|
2.5.1 Nonrelativistic Plasma Dispersion Function |
|
|
69 | (2) |
|
2.5.2 Response Tensor for a Maxwellian Distribution |
|
|
71 | (3) |
|
2.5.3 Mildly Relativistic Limit of Trubnikov's Tensor |
|
|
74 | (2) |
|
2.5.4 Shkarofsky and Dnestrovskii Functions |
|
|
76 | (4) |
|
2.5.5 RPDFs Involving Hypergeometric Functions |
|
|
80 | (2) |
|
|
82 | (8) |
|
|
82 | (3) |
|
2.6.2 Response Tensor for a ID Pair Plasma |
|
|
85 | (2) |
|
2.6.3 Specific Distributions for a ID Electron Gas |
|
|
87 | (3) |
|
2.7 Response Tensor for a Synchrotron-Emitting Gas |
|
|
90 | (9) |
|
2.7.1 Synchrotron Approximation |
|
|
90 | (3) |
|
2.7.2 Expansion About a Point of Stationary Phase |
|
|
93 | (1) |
|
2.7.3 Transverse Components of the Response Tensor |
|
|
94 | (2) |
|
2.7.4 Airy Integral Approximation |
|
|
96 | (1) |
|
2.7.5 Power-Law and Juttner Distributions |
|
|
97 | (2) |
|
2.8 Nonlinear Response Tensors |
|
|
99 | (6) |
|
2.8.1 Quadratic Response Tensor for a Cold Plasma |
|
|
100 | (1) |
|
2.8.2 Higher Order Currents |
|
|
101 | (1) |
|
2.8.3 Quadratic Response Tensor for Arbitrary Distribution |
|
|
102 | (1) |
|
|
103 | (2) |
|
3 Waves in Magnetized Plasmas |
|
|
105 | (56) |
|
|
106 | (6) |
|
3.1.1 Invariant Dispersion Equation |
|
|
106 | (3) |
|
3.1.2 Polarization 3-Vector |
|
|
109 | (1) |
|
3.1.3 Ratio of Electric to Total Energy |
|
|
110 | (1) |
|
3.1.4 Absorption Coefficient |
|
|
111 | (1) |
|
3.2 Waves in Cool Electron-Ion Plasmas |
|
|
112 | (10) |
|
3.2.1 Cold Plasma Dispersion Equation |
|
|
112 | (2) |
|
3.2.2 Parallel and Perpendicular Propagation |
|
|
114 | (1) |
|
3.2.3 Cutoffs and Resonances |
|
|
115 | (1) |
|
|
116 | (2) |
|
3.2.5 Low-Frequency Cold-Plasma Waves |
|
|
118 | (1) |
|
3.2.6 Inertial and Kinetic Alfven Waves |
|
|
119 | (1) |
|
|
120 | (2) |
|
3.3 Waves in Cold Electronic Plasmas |
|
|
122 | (10) |
|
|
122 | (2) |
|
3.3.2 Four Branches of Magnetoionic Modes |
|
|
124 | (1) |
|
|
125 | (2) |
|
3.3.4 High-Frequency Limit |
|
|
127 | (1) |
|
3.3.5 Effect of an Admixture of Positrons |
|
|
128 | (2) |
|
3.3.6 Lorentz Transformation of Magnetoionic Waves |
|
|
130 | (2) |
|
3.3.7 Transformation of the Polarization Vector |
|
|
132 | (1) |
|
3.4 Waves in Weakly Relativistic Thermal Plasmas |
|
|
132 | (8) |
|
3.4.1 Cyclotron-Harmonic Modes |
|
|
133 | (4) |
|
3.4.2 Inclusion of Weakly Relativistic Effects |
|
|
137 | (3) |
|
3.5 Waves in Pulsar Plasma |
|
|
140 | (11) |
|
|
140 | (1) |
|
3.5.2 Effect of the Cyclotron Resonance |
|
|
141 | (2) |
|
3.5.3 Effect of a Spread in Lorentz Factors |
|
|
143 | (3) |
|
3.5.4 Wave Modes of a Counter-Streaming Pair Plasma |
|
|
146 | (2) |
|
3.5.5 Instabilities in a Pulsar Plasma |
|
|
148 | (2) |
|
3.5.6 Counter-Streaming Instabilities |
|
|
150 | (1) |
|
3.6 Weak-Anisotropy Approximation |
|
|
151 | (10) |
|
3.6.1 Projection onto the Transverse Plane |
|
|
152 | (1) |
|
|
153 | (2) |
|
3.6.3 High-Frequency Waves |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
159 | (2) |
|
|
161 | (40) |
|
4.1 Gyromagnetic Emission |
|
|
161 | (8) |
|
4.1.1 Probability of Emission for Periodic Motion |
|
|
161 | (2) |
|
4.1.2 Gyroresonance Condition |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (2) |
|
4.1.5 Differential Changes |
|
|
167 | (1) |
|
4.1.6 Quasilinear Equations |
|
|
168 | (1) |
|
4.2 Gyromagnetic Emission in Vacuo |
|
|
169 | (6) |
|
4.2.1 Gyromagnetic Emission of Transverse Waves |
|
|
169 | (3) |
|
4.2.2 Radiation Reaction to Gyromagnetic Emission |
|
|
172 | (3) |
|
|
175 | (7) |
|
4.3.1 Emissivity in a Magnetoionic Mode |
|
|
176 | (1) |
|
4.3.2 Gyromagnetic Emission by Thermal Particles |
|
|
177 | (2) |
|
4.3.3 Semirelativistic Approximation |
|
|
179 | (2) |
|
4.3.4 Electron Cyclotron Maser Emission |
|
|
181 | (1) |
|
|
182 | (9) |
|
4.4.1 Synchrotron Emissivity |
|
|
183 | (2) |
|
4.4.2 Synchrotron Absorption |
|
|
185 | (3) |
|
4.4.3 Synchrotron Absorption: Thermal |
|
|
188 | (2) |
|
|
190 | (1) |
|
4.5 Thomson Scattering in a Magnetic Field |
|
|
191 | (10) |
|
4.5.1 Probability for Thomson Scattering |
|
|
192 | (2) |
|
4.5.2 Quasilinear Equations for Scattering |
|
|
194 | (1) |
|
4.5.3 Scattering Cross Section |
|
|
195 | (1) |
|
4.5.4 Scattering of Magnetoionic Waves |
|
|
196 | (2) |
|
4.5.5 Resonant Thomson Scattering |
|
|
198 | (2) |
|
|
200 | (1) |
|
5 Magnetized Dirac Electron |
|
|
201 | (50) |
|
5.1 Dirac Wavefunctions in a Magnetostatic Field |
|
|
202 | (8) |
|
5.1.1 Review of the Dirac Equation for B = 0 |
|
|
202 | (1) |
|
5.1.2 The Dirac Equation in a Magnetostatic Field |
|
|
203 | (1) |
|
5.1.3 Construction of the Wavefunctions |
|
|
204 | (4) |
|
5.1.4 Johnson-Lippmann Wavefunctions |
|
|
208 | (1) |
|
5.1.5 Orthogonality and Completeness Relations |
|
|
209 | (1) |
|
5.2 Spin Operators and Eigenfunctions |
|
|
210 | (7) |
|
5.2.1 Helicity Eigenstates in a Magnetic Field |
|
|
210 | (2) |
|
5.2.2 Magnetic-Moment Eigenstates |
|
|
212 | (2) |
|
5.2.3 Eigenstates in the Cylindrical Gauge |
|
|
214 | (1) |
|
5.2.4 Average over the Position of the Gyrocenter |
|
|
215 | (2) |
|
5.3 Electron Propagator in a Magnetostatic Field |
|
|
217 | (6) |
|
5.3.1 Statistically Averaged Electron Propagator |
|
|
217 | (3) |
|
5.3.2 Electron Propagator as Green Function |
|
|
220 | (2) |
|
5.3.3 Spin Projection Operators |
|
|
222 | (1) |
|
5.4 Vertex Function in a Magnetic Field |
|
|
223 | (7) |
|
5.4.1 Definition of the Vertex Function |
|
|
223 | (2) |
|
5.4.2 Gauge-Dependent Factor Along an Electron Line |
|
|
225 | (1) |
|
5.4.3 Vertex Function for Arbitrary Spin States |
|
|
226 | (2) |
|
5.4.4 Sum over Initial and Final Spin States |
|
|
228 | (2) |
|
5.5 Ritus Method and the Vertex Formalism |
|
|
230 | (9) |
|
5.5.1 Factorization of the Dirac Equation |
|
|
231 | (2) |
|
5.5.2 Reduced Wavefunctions |
|
|
233 | (1) |
|
5.5.3 Reduced Propagator in the Ritus Method |
|
|
234 | (1) |
|
5.5.4 Propagator in the Vertex Formalism |
|
|
235 | (1) |
|
5.5.5 Vertex Matrix in the Ritus Method |
|
|
236 | (2) |
|
5.5.6 Calculation of Traces Using the Ritus Method |
|
|
238 | (1) |
|
5.6 Feynman Rules for QPD in a Magnetized Plasma |
|
|
239 | (12) |
|
5.6.1 Rules for an Unmagnetized System |
|
|
239 | (4) |
|
5.6.2 Modified Rules for Magnetized Systems |
|
|
243 | (2) |
|
5.6.3 Probability of Transition |
|
|
245 | (3) |
|
5.6.4 Probabilities for Second-Order Processes |
|
|
248 | (1) |
|
|
249 | (2) |
|
6 Quantum Theory of Gyromagnetic Processes |
|
|
251 | (58) |
|
6.1 Gyromagnetic Emission and Pair Creation |
|
|
251 | (12) |
|
6.1.1 Probability of Gyromagnetic Transition |
|
|
251 | (4) |
|
6.1.2 Resonant Momenta and Energies |
|
|
255 | (3) |
|
6.1.3 Kinetic Equations for Gyromagnetic Processes |
|
|
258 | (3) |
|
6.1.4 Anharmonicity and Quantum Oscillations |
|
|
261 | (2) |
|
6.2 Quantum Theory of Cyclotron Emission |
|
|
263 | (9) |
|
6.2.1 Cyclotron Approximation |
|
|
264 | (4) |
|
6.2.2 Spontaneous Gyromagnetic Emission in Vacuo |
|
|
268 | (3) |
|
6.2.3 Cyclotron Emission and Absorption Coefficients |
|
|
271 | (1) |
|
6.3 Quantum Theory of Synchrotron Emission |
|
|
272 | (13) |
|
6.3.1 Quantum Synchrotron Parameter |
|
|
273 | (1) |
|
6.3.2 Synchrotron Approximation |
|
|
274 | (5) |
|
6.3.3 Transition Rate for Synchrotron Emission |
|
|
279 | (3) |
|
6.3.4 Change in the Spin During Synchrotron Emission |
|
|
282 | (1) |
|
6.3.5 Gyromagnetic Emission in Supercritical Fields |
|
|
283 | (2) |
|
6.4 One-Photon Pair Creation |
|
|
285 | (15) |
|
6.4.1 Probability of Pair Creation and Decay |
|
|
285 | (3) |
|
6.4.2 Rate of Pair Production Near Threshold |
|
|
288 | (1) |
|
6.4.3 Creation of Relativistic Pairs |
|
|
289 | (4) |
|
6.4.4 Spin- and Polarization-Dependent Decay Rates |
|
|
293 | (3) |
|
6.4.5 Energy Distribution of the Pairs |
|
|
296 | (2) |
|
6.4.6 One-Photon Pair Annihilation |
|
|
298 | (2) |
|
6.5 Positronium in a Superstrong Magnetic Field |
|
|
300 | (9) |
|
6.5.1 Qualitative Description of Positronium |
|
|
300 | (2) |
|
6.5.2 Approximate Form of Schrodinger's Equation |
|
|
302 | (1) |
|
6.5.3 Bound States of Positronium |
|
|
303 | (1) |
|
6.5.4 Evolution of Photons into Bound Pairs |
|
|
304 | (1) |
|
6.5.5 Tunneling Across the Intersection Point |
|
|
305 | (1) |
|
|
306 | (3) |
|
7 Second Order Gyromagnetic Processes |
|
|
309 | (30) |
|
7.1 General Properties of Compton Scattering |
|
|
309 | (8) |
|
7.1.1 Probability of Compton Scattering |
|
|
310 | (2) |
|
7.1.2 Kinetic Equations for Compton Scattering |
|
|
312 | (1) |
|
7.1.3 Sum over Intermediate States: Vertex Formalism |
|
|
313 | (1) |
|
7.1.4 Sum over Intermediate States: Ritus Method |
|
|
314 | (3) |
|
7.2 Compton Scattering by an Electron with n = 0 |
|
|
317 | (6) |
|
7.2.1 Scattering Probability for n = 0 |
|
|
318 | (1) |
|
|
319 | (2) |
|
7.2.3 Resonant Compton Scattering |
|
|
321 | (2) |
|
7.3 Scattering in the Cyclotron Approximation |
|
|
323 | (5) |
|
7.3.1 Cyclotron-Like Approximation |
|
|
324 | (1) |
|
7.3.2 Scattering in the Birefringent Vacuum |
|
|
324 | (1) |
|
7.3.3 Inverse Compton Scattering |
|
|
325 | (1) |
|
7.3.4 Special Case n = 0, x' = 0 |
|
|
326 | (2) |
|
|
328 | (5) |
|
7.4.1 Kinetic Equations for Two-Photon Processes |
|
|
329 | (1) |
|
7.4.2 Double Cyclotron Emission |
|
|
330 | (2) |
|
7.4.3 Two-Photon Pair Creation and Annihilation |
|
|
332 | (1) |
|
7.5 Electron-Ion and Electron-Electron Scattering |
|
|
333 | (6) |
|
7.5.1 Collisional Excitation by a Classical Ion |
|
|
334 | (1) |
|
7.5.2 Electron-Electron (Møller) Scattering |
|
|
335 | (2) |
|
|
337 | (2) |
|
|
339 | (54) |
|
8.1 Linear Response of the Magnetized Vacuum |
|
|
339 | (16) |
|
8.1.1 Vacuum Polarization Tensor |
|
|
340 | (2) |
|
8.1.2 Unregularized Tensor: Geheniau Form |
|
|
342 | (3) |
|
8.1.3 Regularization of the Vacuum Polarization Tensor |
|
|
345 | (2) |
|
8.1.4 Vacuum Polarization Tensor: Vertex Formalism |
|
|
347 | (3) |
|
8.1.5 Antihermitian Part of the Vacuum Polarization Tensor |
|
|
350 | (2) |
|
8.1.6 Vacuum Polarization: Limiting Cases |
|
|
352 | (1) |
|
8.1.7 Wave Modes of the Magnetized Vacuum |
|
|
353 | (2) |
|
8.2 Schwinger's Proper-Time Method |
|
|
355 | (8) |
|
|
355 | (3) |
|
8.2.2 Propagator in an Electromagnetic Field |
|
|
358 | (2) |
|
8.2.3 Weisskopf's Lagrangian |
|
|
360 | (2) |
|
8.2.4 Generalization of Heisenberg-Euler Lagrangian |
|
|
362 | (1) |
|
8.3 Vacuum in an Electromagnetic Wrench |
|
|
363 | (9) |
|
8.3.1 Response Tensor for an Electromagnetic Wrench |
|
|
364 | (1) |
|
8.3.2 Response Tensors for |
|
|
365 | (4) |
|
8.3.3 Nonlinear Response Tensors for |
|
|
369 | (1) |
|
8.3.4 Spontaneous Pair Creation |
|
|
370 | (2) |
|
8.4 Waves in Strongly Magnetized Vacuum |
|
|
372 | (10) |
|
8.4.1 Weak-Field, Weak-Dispersion Limit |
|
|
373 | (2) |
|
8.4.2 Vacuum Wave Modes: General Case |
|
|
375 | (3) |
|
8.4.3 Vacuum Plus Cold Electron Gas |
|
|
378 | (2) |
|
|
380 | (2) |
|
|
382 | (11) |
|
8.5.1 Photon Splitting as a Three-Wave Interaction |
|
|
382 | (3) |
|
8.5.2 Three-Wave Interactions in the Vacuum |
|
|
385 | (1) |
|
8.5.3 Decay Rates in the Weak-Field Approximation |
|
|
386 | (2) |
|
|
388 | (2) |
|
|
390 | (3) |
|
9 Response of a Magnetized Electron Gas |
|
|
393 | (72) |
|
9.1 Response of a Magnetized Electron Gas |
|
|
393 | (13) |
|
9.1.1 Calculation of the Response Tensor |
|
|
394 | (1) |
|
|
394 | (3) |
|
|
397 | (2) |
|
9.1.4 Nongyrotropic and Gyrotropic Parts of |
|
|
399 | (2) |
|
9.1.5 Response Tensor: Ritus Method |
|
|
401 | (1) |
|
9.1.6 Neglect of Quantum Effects |
|
|
402 | (2) |
|
9.1.7 Nonquantum Limit of |
|
|
404 | (2) |
|
9.2 Relativistic Plasma Dispersion Functions |
|
|
406 | (12) |
|
9.2.1 Dispersion-Integral Method |
|
|
406 | (3) |
|
9.2.2 Evaluation of Dispersion Integrals |
|
|
409 | (2) |
|
|
411 | (1) |
|
9.2.4 Plasma Dispersion Function |
|
|
412 | (2) |
|
|
414 | (2) |
|
9.2.6 Imaginary Parts of RPDFs |
|
|
416 | (2) |
|
9.3 Magnetized Thermal Distributions |
|
|
418 | (12) |
|
9.3.1 Fermi-Dirac Distribution for Magnetized Electrons |
|
|
418 | (1) |
|
9.3.2 Completely Degenerate and Nondegenerate Limits |
|
|
419 | (2) |
|
9.3.3 RPDFs: Completely Degenerate Limit |
|
|
421 | (2) |
|
9.3.4 Dissipation in a Completely Degenerate Electron Gas |
|
|
423 | (1) |
|
9.3.5 RPDFs: Nondegenerate Limit |
|
|
424 | (3) |
|
9.3.6 Nonrelativistic Distributions |
|
|
427 | (3) |
|
9.4 Special and Limiting Cases of the Response Tensor |
|
|
430 | (8) |
|
9.4.1 Parallel Propagation |
|
|
430 | (3) |
|
9.4.2 Small-x Approximation |
|
|
433 | (1) |
|
9.4.3 One-Dimensional (ID) Electron Gas |
|
|
434 | (2) |
|
9.4.4 δ-Function Distribution Function |
|
|
436 | (2) |
|
9.5 Wave Dispersion: Parallel, Degenerate Case |
|
|
438 | (12) |
|
|
439 | (1) |
|
9.5.2 Dispersion Equation for Parallel Propagation |
|
|
440 | (1) |
|
|
441 | (3) |
|
|
444 | (5) |
|
9.5.5 Discussion of GA and PC Modes |
|
|
449 | (1) |
|
9.6 Response of a Spin-Polarized Electron Gas |
|
|
450 | (6) |
|
9.6.1 Spin-Dependent Occupation Number |
|
|
450 | (1) |
|
|
451 | (3) |
|
9.6.3 Small-x Approximation to |
|
|
454 | (1) |
|
9.6.4 Reduction to the Cold-Plasma Limit |
|
|
455 | (1) |
|
9.7 Nonlinear Response Tensors |
|
|
456 | (9) |
|
9.7.1 Closed Loop Diagrams |
|
|
457 | (1) |
|
9.7.2 Quadratic Response Tensor for the Vacuum |
|
|
457 | (2) |
|
9.7.3 Nonlinear Responses: The Vertex Formalism |
|
|
459 | (2) |
|
9.7.4 Quadratic Response Tensor |
|
|
461 | (1) |
|
9.7.5 Cubic Response Tensor |
|
|
462 | (1) |
|
|
463 | (2) |
|
|
465 | (16) |
|
A.1 Bessel Functions and J-Functions |
|
|
465 | (8) |
|
A.1.1 Ordinary Bessel Functions |
|
|
465 | (1) |
|
A.1.2 Modified Bessel Functions Iv (z) |
|
|
466 | (1) |
|
A.1.3 Macdonald Functions Kv(z) |
|
|
466 | (2) |
|
|
468 | (1) |
|
|
468 | (5) |
|
A.2 Relativistic Plasma Dispersion Functions |
|
|
473 | (4) |
|
A.2.1 Relativistic Thermal Function T(z, p) |
|
|
473 | (1) |
|
A.2.2 Trubnikov Functions |
|
|
473 | (1) |
|
A.2.3 Shkarofsky and Dnestrovskii Functions |
|
|
474 | (3) |
|
|
477 | (4) |
|
A.3.1 Definitions and the Standard Representation |
|
|
477 | (1) |
|
A.3.2 Basic Set of Dirac Matrices |
|
|
478 | (1) |
|
|
479 | (2) |
Index |
|
481 | |