Atjaunināt sīkdatņu piekrišanu

Quantum Plasmadynamics: Magnetized Plasmas 2013 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 490 pages, height x width: 235x155 mm, weight: 7548 g, 41 Illustrations, black and white; XIV, 490 p. 41 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Physics 854
  • Izdošanas datums: 20-Sep-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461440440
  • ISBN-13: 9781461440444
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 82,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 97,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 490 pages, height x width: 235x155 mm, weight: 7548 g, 41 Illustrations, black and white; XIV, 490 p. 41 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Physics 854
  • Izdošanas datums: 20-Sep-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461440440
  • ISBN-13: 9781461440444
Citas grāmatas par šo tēmu:
Quantum Plasmadynamics is a synthesis of the kinetic theory of plasmas and quantum electrodynamics (QED). In this volume, the approach applied to unmagnetized plasmas in volume 1 is generalized to magnetized plasmas. First, a covariant version of nonquantum kinetic theory is formulated for single-particle (emission and scattering)  processes and the collective-medium response. The relativistic quantum treatment is based on solutions of Dirac's equation for an electron in a magnetostatic field, and single-particle processes are treated using a magnetized version of QED. The response of an electron gas is derived by generalizing the derivation of the response of the magnetized vacuum.

Recenzijas

From the reviews of Vol. 1 Quantum Plasmadynamics: Unmagnetized Plasmas (Lect. Notes Phys. 735)

The ten chapters and 464 pages book [ ] gives the best introduction to the quantum electrodynamics and the kinetic theory of relativistic and non-relativistic charged particles. [ ] The   materials of the most important part of the book are supported by illustrations. [ ]useful for advanced graduate students, scientists and all who are interested in plasma physics and  confinement systems. (M. J. Canfell, Zentralblatt MATH, Vol. 1158, 2009)

1 Covariant Fluid Models for Magnetized Plasmas
1(40)
1.1 Covariant Description of a Magnetostatic Field
1(10)
1.1.1 Maxwell 4-Tensor
2(2)
1.1.2 Projection Tensors g and g
4(1)
1.1.3 Basis 4-Vectors
5(3)
1.1.4 Linear and Nonlinear Response Tensor
8(3)
1.2 Covariant Cold Plasma Model
11(7)
1.2.1 Fluid Description of a Cold Plasma
11(2)
1.2.2 Linear Response Tensor: Cold Plasma
13(1)
1.2.3 Tensor
14(2)
1.2.4 Cold Plasma Dielectric Tensor
16(2)
1.3 Inclusion of Streaming Motions
18(5)
1.3.1 Lorentz Transformation to Streaming Frame
18(3)
1.3.2 Dielectric Tensor for a Streaming Distribution
21(1)
1.3.3 Cold Counterstreaming Electrons and Positrons
22(1)
1.4 Relativistic Magnetohydrodynamics
23(9)
1.4.1 Covariant Form of the MHD Equations
24(2)
1.4.2 Derivation from Kinetic Theory
26(1)
1.4.3 Generalized Ohm's Law
27(1)
1.4.4 Two-Fluid Model for a Pair Plasma
28(1)
1.4.5 MHD Wave Modes
29(3)
1.5 Quantum Fluid Theory
32(9)
1.5.1 Early QFT Theories
32(2)
1.5.2 Generalizations of QFT
34(1)
1.5.3 Quasi-classical Models for Spin
35(1)
1.5.4 Spin-Dependent Cold Plasma Response
36(2)
References
38(3)
2 Response Tensors for Magnetized Plasmas
41(64)
2.1 Orbit of a Spiraling Charge
42(6)
2.1.1 Orbit of a Spiraling Charge
42(2)
2.1.2 Characteristic Response Due to a Spiraling Charge
44(1)
2.1.3 Expansion in Bessel Functions
45(1)
2.1.4 Gyroresonance Condition
46(2)
2.2 Perturbation Expansions
48(3)
2.2.1 Perturbation Expansion of the 4-Current
48(2)
2.2.2 Small-Gyroradius Approximation
50(1)
2.3 General Forms for the Linear Response 4-Tensor
51(9)
2.3.1 Forward-Scattering Method for a Magnetized Plasma
51(2)
2.3.2 Forward-Scattering Form Summed over Gyroharmonics
53(2)
2.3.3 Vlasov Method for a Magnetized Plasma
55(2)
2.3.4 Vlasov Form for the Linear Response Tensor
57(2)
2.3.5 Vlasov Form Summed over Gyroharmonics
59(1)
2.4 Response of a Relativistic Thermal Plasma
60(9)
2.4.1 Trubnikov's Response Tensor for a Magnetized Plasma
60(4)
2.4.2 Forward-Scattering Form of Trubnikov's Tensor
64(1)
2.4.3 Other Forms of (k) for a Juttner Distribution
65(1)
2.4.4 Relativistic Plasma Dispersion Functions (RPDFs)
66(1)
2.4.5 Strictly-Perpendicular Juttner Distribution
67(2)
2.5 Weakly Relativistic Thermal Plasma
69(13)
2.5.1 Nonrelativistic Plasma Dispersion Function
69(2)
2.5.2 Response Tensor for a Maxwellian Distribution
71(3)
2.5.3 Mildly Relativistic Limit of Trubnikov's Tensor
74(2)
2.5.4 Shkarofsky and Dnestrovskii Functions
76(4)
2.5.5 RPDFs Involving Hypergeometric Functions
80(2)
2.6 Pulsar Plasma
82(8)
2.6.1 Pulsars
82(3)
2.6.2 Response Tensor for a ID Pair Plasma
85(2)
2.6.3 Specific Distributions for a ID Electron Gas
87(3)
2.7 Response Tensor for a Synchrotron-Emitting Gas
90(9)
2.7.1 Synchrotron Approximation
90(3)
2.7.2 Expansion About a Point of Stationary Phase
93(1)
2.7.3 Transverse Components of the Response Tensor
94(2)
2.7.4 Airy Integral Approximation
96(1)
2.7.5 Power-Law and Juttner Distributions
97(2)
2.8 Nonlinear Response Tensors
99(6)
2.8.1 Quadratic Response Tensor for a Cold Plasma
100(1)
2.8.2 Higher Order Currents
101(1)
2.8.3 Quadratic Response Tensor for Arbitrary Distribution
102(1)
References
103(2)
3 Waves in Magnetized Plasmas
105(56)
3.1 Wave Dispersion
106(6)
3.1.1 Invariant Dispersion Equation
106(3)
3.1.2 Polarization 3-Vector
109(1)
3.1.3 Ratio of Electric to Total Energy
110(1)
3.1.4 Absorption Coefficient
111(1)
3.2 Waves in Cool Electron-Ion Plasmas
112(10)
3.2.1 Cold Plasma Dispersion Equation
112(2)
3.2.2 Parallel and Perpendicular Propagation
114(1)
3.2.3 Cutoffs and Resonances
115(1)
3.2.4 Hybrid Waves
116(2)
3.2.5 Low-Frequency Cold-Plasma Waves
118(1)
3.2.6 Inertial and Kinetic Alfven Waves
119(1)
3.2.7 MHD-Like Waves
120(2)
3.3 Waves in Cold Electronic Plasmas
122(10)
3.3.1 Magnetoionic Waves
122(2)
3.3.2 Four Branches of Magnetoionic Modes
124(1)
3.3.3 QL and QT Limits
125(2)
3.3.4 High-Frequency Limit
127(1)
3.3.5 Effect of an Admixture of Positrons
128(2)
3.3.6 Lorentz Transformation of Magnetoionic Waves
130(2)
3.3.7 Transformation of the Polarization Vector
132(1)
3.4 Waves in Weakly Relativistic Thermal Plasmas
132(8)
3.4.1 Cyclotron-Harmonic Modes
133(4)
3.4.2 Inclusion of Weakly Relativistic Effects
137(3)
3.5 Waves in Pulsar Plasma
140(11)
3.5.1 Cold-Plasma Model
140(1)
3.5.2 Effect of the Cyclotron Resonance
141(2)
3.5.3 Effect of a Spread in Lorentz Factors
143(3)
3.5.4 Wave Modes of a Counter-Streaming Pair Plasma
146(2)
3.5.5 Instabilities in a Pulsar Plasma
148(2)
3.5.6 Counter-Streaming Instabilities
150(1)
3.6 Weak-Anisotropy Approximation
151(10)
3.6.1 Projection onto the Transverse Plane
152(1)
3.6.2 Stokes Parameters
153(2)
3.6.3 High-Frequency Waves
155(3)
3.6.4 Mode Coupling
158(1)
References
159(2)
4 Gyromagnetic Processes
161(40)
4.1 Gyromagnetic Emission
161(8)
4.1.1 Probability of Emission for Periodic Motion
161(2)
4.1.2 Gyroresonance Condition
163(1)
4.1.3 Quantum Recoil
164(1)
4.1.4 Resonance Ellipses
165(2)
4.1.5 Differential Changes
167(1)
4.1.6 Quasilinear Equations
168(1)
4.2 Gyromagnetic Emission in Vacuo
169(6)
4.2.1 Gyromagnetic Emission of Transverse Waves
169(3)
4.2.2 Radiation Reaction to Gyromagnetic Emission
172(3)
4.3 Cyclotron Emission
175(7)
4.3.1 Emissivity in a Magnetoionic Mode
176(1)
4.3.2 Gyromagnetic Emission by Thermal Particles
177(2)
4.3.3 Semirelativistic Approximation
179(2)
4.3.4 Electron Cyclotron Maser Emission
181(1)
4.4 Synchrotron Emission
182(9)
4.4.1 Synchrotron Emissivity
183(2)
4.4.2 Synchrotron Absorption
185(3)
4.4.3 Synchrotron Absorption: Thermal
188(2)
4.4.4 Razin Suppression
190(1)
4.5 Thomson Scattering in a Magnetic Field
191(10)
4.5.1 Probability for Thomson Scattering
192(2)
4.5.2 Quasilinear Equations for Scattering
194(1)
4.5.3 Scattering Cross Section
195(1)
4.5.4 Scattering of Magnetoionic Waves
196(2)
4.5.5 Resonant Thomson Scattering
198(2)
References
200(1)
5 Magnetized Dirac Electron
201(50)
5.1 Dirac Wavefunctions in a Magnetostatic Field
202(8)
5.1.1 Review of the Dirac Equation for B = 0
202(1)
5.1.2 The Dirac Equation in a Magnetostatic Field
203(1)
5.1.3 Construction of the Wavefunctions
204(4)
5.1.4 Johnson-Lippmann Wavefunctions
208(1)
5.1.5 Orthogonality and Completeness Relations
209(1)
5.2 Spin Operators and Eigenfunctions
210(7)
5.2.1 Helicity Eigenstates in a Magnetic Field
210(2)
5.2.2 Magnetic-Moment Eigenstates
212(2)
5.2.3 Eigenstates in the Cylindrical Gauge
214(1)
5.2.4 Average over the Position of the Gyrocenter
215(2)
5.3 Electron Propagator in a Magnetostatic Field
217(6)
5.3.1 Statistically Averaged Electron Propagator
217(3)
5.3.2 Electron Propagator as Green Function
220(2)
5.3.3 Spin Projection Operators
222(1)
5.4 Vertex Function in a Magnetic Field
223(7)
5.4.1 Definition of the Vertex Function
223(2)
5.4.2 Gauge-Dependent Factor Along an Electron Line
225(1)
5.4.3 Vertex Function for Arbitrary Spin States
226(2)
5.4.4 Sum over Initial and Final Spin States
228(2)
5.5 Ritus Method and the Vertex Formalism
230(9)
5.5.1 Factorization of the Dirac Equation
231(2)
5.5.2 Reduced Wavefunctions
233(1)
5.5.3 Reduced Propagator in the Ritus Method
234(1)
5.5.4 Propagator in the Vertex Formalism
235(1)
5.5.5 Vertex Matrix in the Ritus Method
236(2)
5.5.6 Calculation of Traces Using the Ritus Method
238(1)
5.6 Feynman Rules for QPD in a Magnetized Plasma
239(12)
5.6.1 Rules for an Unmagnetized System
239(4)
5.6.2 Modified Rules for Magnetized Systems
243(2)
5.6.3 Probability of Transition
245(3)
5.6.4 Probabilities for Second-Order Processes
248(1)
References
249(2)
6 Quantum Theory of Gyromagnetic Processes
251(58)
6.1 Gyromagnetic Emission and Pair Creation
251(12)
6.1.1 Probability of Gyromagnetic Transition
251(4)
6.1.2 Resonant Momenta and Energies
255(3)
6.1.3 Kinetic Equations for Gyromagnetic Processes
258(3)
6.1.4 Anharmonicity and Quantum Oscillations
261(2)
6.2 Quantum Theory of Cyclotron Emission
263(9)
6.2.1 Cyclotron Approximation
264(4)
6.2.2 Spontaneous Gyromagnetic Emission in Vacuo
268(3)
6.2.3 Cyclotron Emission and Absorption Coefficients
271(1)
6.3 Quantum Theory of Synchrotron Emission
272(13)
6.3.1 Quantum Synchrotron Parameter
273(1)
6.3.2 Synchrotron Approximation
274(5)
6.3.3 Transition Rate for Synchrotron Emission
279(3)
6.3.4 Change in the Spin During Synchrotron Emission
282(1)
6.3.5 Gyromagnetic Emission in Supercritical Fields
283(2)
6.4 One-Photon Pair Creation
285(15)
6.4.1 Probability of Pair Creation and Decay
285(3)
6.4.2 Rate of Pair Production Near Threshold
288(1)
6.4.3 Creation of Relativistic Pairs
289(4)
6.4.4 Spin- and Polarization-Dependent Decay Rates
293(3)
6.4.5 Energy Distribution of the Pairs
296(2)
6.4.6 One-Photon Pair Annihilation
298(2)
6.5 Positronium in a Superstrong Magnetic Field
300(9)
6.5.1 Qualitative Description of Positronium
300(2)
6.5.2 Approximate Form of Schrodinger's Equation
302(1)
6.5.3 Bound States of Positronium
303(1)
6.5.4 Evolution of Photons into Bound Pairs
304(1)
6.5.5 Tunneling Across the Intersection Point
305(1)
References
306(3)
7 Second Order Gyromagnetic Processes
309(30)
7.1 General Properties of Compton Scattering
309(8)
7.1.1 Probability of Compton Scattering
310(2)
7.1.2 Kinetic Equations for Compton Scattering
312(1)
7.1.3 Sum over Intermediate States: Vertex Formalism
313(1)
7.1.4 Sum over Intermediate States: Ritus Method
314(3)
7.2 Compton Scattering by an Electron with n = 0
317(6)
7.2.1 Scattering Probability for n = 0
318(1)
7.2.2 Transitions n = 0
319(2)
7.2.3 Resonant Compton Scattering
321(2)
7.3 Scattering in the Cyclotron Approximation
323(5)
7.3.1 Cyclotron-Like Approximation
324(1)
7.3.2 Scattering in the Birefringent Vacuum
324(1)
7.3.3 Inverse Compton Scattering
325(1)
7.3.4 Special Case n = 0, x' = 0
326(2)
7.4 Two-Photon Processes
328(5)
7.4.1 Kinetic Equations for Two-Photon Processes
329(1)
7.4.2 Double Cyclotron Emission
330(2)
7.4.3 Two-Photon Pair Creation and Annihilation
332(1)
7.5 Electron-Ion and Electron-Electron Scattering
333(6)
7.5.1 Collisional Excitation by a Classical Ion
334(1)
7.5.2 Electron-Electron (Møller) Scattering
335(2)
References
337(2)
8 Magnetized Vacuum
339(54)
8.1 Linear Response of the Magnetized Vacuum
339(16)
8.1.1 Vacuum Polarization Tensor
340(2)
8.1.2 Unregularized Tensor: Geheniau Form
342(3)
8.1.3 Regularization of the Vacuum Polarization Tensor
345(2)
8.1.4 Vacuum Polarization Tensor: Vertex Formalism
347(3)
8.1.5 Antihermitian Part of the Vacuum Polarization Tensor
350(2)
8.1.6 Vacuum Polarization: Limiting Cases
352(1)
8.1.7 Wave Modes of the Magnetized Vacuum
353(2)
8.2 Schwinger's Proper-Time Method
355(8)
8.2.1 Proper-Time Method
355(3)
8.2.2 Propagator in an Electromagnetic Field
358(2)
8.2.3 Weisskopf's Lagrangian
360(2)
8.2.4 Generalization of Heisenberg-Euler Lagrangian
362(1)
8.3 Vacuum in an Electromagnetic Wrench
363(9)
8.3.1 Response Tensor for an Electromagnetic Wrench
364(1)
8.3.2 Response Tensors for
365(4)
8.3.3 Nonlinear Response Tensors for
369(1)
8.3.4 Spontaneous Pair Creation
370(2)
8.4 Waves in Strongly Magnetized Vacuum
372(10)
8.4.1 Weak-Field, Weak-Dispersion Limit
373(2)
8.4.2 Vacuum Wave Modes: General Case
375(3)
8.4.3 Vacuum Plus Cold Electron Gas
378(2)
8.4.4 Vacuum Resonance
380(2)
8.5 Photon Splitting
382(11)
8.5.1 Photon Splitting as a Three-Wave Interaction
382(3)
8.5.2 Three-Wave Interactions in the Vacuum
385(1)
8.5.3 Decay Rates in the Weak-Field Approximation
386(2)
8.5.4 S-Matrix Approach
388(2)
References
390(3)
9 Response of a Magnetized Electron Gas
393(72)
9.1 Response of a Magnetized Electron Gas
393(13)
9.1.1 Calculation of the Response Tensor
394(1)
9.1.2 Vertex Form of
394(3)
9.1.3 Summed Form of
397(2)
9.1.4 Nongyrotropic and Gyrotropic Parts of
399(2)
9.1.5 Response Tensor: Ritus Method
401(1)
9.1.6 Neglect of Quantum Effects
402(2)
9.1.7 Nonquantum Limit of
404(2)
9.2 Relativistic Plasma Dispersion Functions
406(12)
9.2.1 Dispersion-Integral Method
406(3)
9.2.2 Evaluation of Dispersion Integrals
409(2)
9.2.3 Nondispersive Part
411(1)
9.2.4 Plasma Dispersion Function
412(2)
9.2.5 RPDF Form of
414(2)
9.2.6 Imaginary Parts of RPDFs
416(2)
9.3 Magnetized Thermal Distributions
418(12)
9.3.1 Fermi-Dirac Distribution for Magnetized Electrons
418(1)
9.3.2 Completely Degenerate and Nondegenerate Limits
419(2)
9.3.3 RPDFs: Completely Degenerate Limit
421(2)
9.3.4 Dissipation in a Completely Degenerate Electron Gas
423(1)
9.3.5 RPDFs: Nondegenerate Limit
424(3)
9.3.6 Nonrelativistic Distributions
427(3)
9.4 Special and Limiting Cases of the Response Tensor
430(8)
9.4.1 Parallel Propagation
430(3)
9.4.2 Small-x Approximation
433(1)
9.4.3 One-Dimensional (ID) Electron Gas
434(2)
9.4.4 δ-Function Distribution Function
436(2)
9.5 Wave Dispersion: Parallel, Degenerate Case
438(12)
9.5.1 Static Response
439(1)
9.5.2 Dispersion Equation for Parallel Propagation
440(1)
9.5.3 Longitudinal Modes
441(3)
9.5.4 Transverse Modes
444(5)
9.5.5 Discussion of GA and PC Modes
449(1)
9.6 Response of a Spin-Polarized Electron Gas
450(6)
9.6.1 Spin-Dependent Occupation Number
450(1)
9.6.2 General Forms for
451(3)
9.6.3 Small-x Approximation to
454(1)
9.6.4 Reduction to the Cold-Plasma Limit
455(1)
9.7 Nonlinear Response Tensors
456(9)
9.7.1 Closed Loop Diagrams
457(1)
9.7.2 Quadratic Response Tensor for the Vacuum
457(2)
9.7.3 Nonlinear Responses: The Vertex Formalism
459(2)
9.7.4 Quadratic Response Tensor
461(1)
9.7.5 Cubic Response Tensor
462(1)
References
463(2)
A Special Functions
465(16)
A.1 Bessel Functions and J-Functions
465(8)
A.1.1 Ordinary Bessel Functions
465(1)
A.1.2 Modified Bessel Functions Iv (z)
466(1)
A.1.3 Macdonald Functions Kv(z)
466(2)
A.1.4 Airy Functions
468(1)
A.1.5 J-Functions
468(5)
A.2 Relativistic Plasma Dispersion Functions
473(4)
A.2.1 Relativistic Thermal Function T(z, p)
473(1)
A.2.2 Trubnikov Functions
473(1)
A.2.3 Shkarofsky and Dnestrovskii Functions
474(3)
A.3 Dirac Algebra
477(4)
A.3.1 Definitions and the Standard Representation
477(1)
A.3.2 Basic Set of Dirac Matrices
478(1)
References
479(2)
Index 481
Following completion of his doctoral thesis in theoretical particle physics at Oxford University in 1965, Don Melrose changed his research interests to plasma astrophysics. In 1969, after post-doctoral appointments in the UK and the USA, he returned to Australia to the Australian National University. He eventually left to take his current appointment as Professor of Physics (Theoretical) at the University of Sydney in 1979. He made important contributions to the theory of coherent emission processes in astrophysics: plasma emission in solar radio bursts, electron cyclotron maser emission and pulsar radio emission. His current interests include pulsars, quantum plasmas and solar flares.