Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Plasmonics

  • Formāts - EPUB+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale. 

1 Input-Output Formalism for Few-Photon Transport
1(24)
Shanshan Xu
Shanhui Fan
1.1 Introduction
1(1)
1.2 Hamiltonian and Input-Output Formalism
2(3)
1.3 Quantum Causality Relation
5(3)
1.4 Connection to Scattering Theory
8(2)
1.5 Single-Photon Transport
10(2)
1.6 Two-Photon Transport
12(2)
1.7 Example: A Waveguide Coupled to a Kerr-Nonlinear Cavity
14(2)
1.8 Wavefunction Approach
16(3)
1.9 Conclusion
19(6)
Appendix
20(2)
References
22(3)
2 Quadrature-Squeezed Light from Emitters in Optical Nanostructures
25(22)
Diego Martin-Cano
Harald R. Haakh
Mario Agio
2.1 Introduction
25(5)
2.1.1 Quadrature-Squeezed Light
27(1)
2.1.2 Detection Schemes
27(1)
2.1.3 Squeezed Light sources
28(2)
2.2 Theoretical Description
30(3)
2.2.1 Macroscopic Quantum Electrodynamics
30(1)
2.2.2 The Optical Bloch Equations
31(1)
2.2.3 Squeezed Resonance Fluorescence
32(1)
2.3 Quadrature Squeezing Assisted by Nanostructures
33(11)
2.3.1 A Single Emitter Coupled to a Nanostructure
33(7)
2.3.2 Cooperative Quadrature Squeezing
40(4)
2.4 Conclusions and Outlook
44(3)
References
45(2)
3 Coupling of Quantum Emitters to Plasmonic Nanoguides
47(26)
Shailesh Kumar
Sergey I. Bozhevolnyi
3.1 Introduction
47(1)
3.2 Theory of Coupling an Emitter to a Plasmonic Waveguide
48(8)
3.2.1 Modes in Plasmonic Waveguides
49(2)
3.2.2 Theory of Coupling
51(5)
3.3 Experimental Demonstrations of Coupling a Quantum Emitter to Plasmonic Nanoguides
56(12)
3.3.1 Quantum Emitters
56(4)
3.3.2 Coupling of Quantum Emitters to Plasmonic Waveguides
60(8)
3.4 Conclusion and Outlook
68(5)
References
69(4)
4 Controlled Interaction of Single Nitrogen Vacancy Centers with Surface Plasmons
73(24)
Esteban Bermudez-Urena
Michael Geiselmann
Romain Quidant
4.1 Introduction
73(1)
4.2 Scanning Probe Assembly
74(13)
4.2.1 Control of Emission Dynamics Through Plasmon Coupling
75(3)
4.2.2 Coupling of NV Centers to Propagating Surface Plasmons
78(9)
4.3 Optical Trapping as a Positioning Tool
87(6)
4.3.1 Experimental Platform to Optically Trap a Single NV Center
88(1)
4.3.2 Surface Plasmon Based Trapping
89(4)
4.4 Conclusions and Outlook
93(4)
References
94(3)
5 Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers
97(24)
M. Y. Shalaginov
R. Chandrasekar
S. Bogdanov
Z. Wang
X. Meng
O. A. Makarova
A. Lagutchev
A. V. Kildishev
A. Boltasseva
V. M. Shalaev
5.1 Introduction
98(1)
5.2 Fundamentals of Hyperbolic Metamaterials
99(1)
5.3 Enhancement of Single-Photon Emission from Color Centers in Diamond
100(8)
5.3.1 Calculations of NV Emission Enhancement by HMM
103(1)
5.3.2 Experimental Demonstration of HMM Enhanced Single-Photon Emission
104(2)
5.3.3 Increasing Collection Efficiency by Outcoupling High-k Waves to Free Space
106(2)
5.4 Lasing Action with Nanorod Hyperbolic Metamaterials
108(7)
5.4.1 Purcell Effect Calculations for Dye Molecules on Nanorod Metamaterials
111(2)
5.4.2 Experimental Demonstration of Lasing with Nanorod Metamaterials
113(2)
5.5 Summary
115(6)
Appendix: Semi-analytical Calculations of the Purcell Factor and Normalized Collected Emission Power
115(2)
References
117(4)
6 Strong Coupling Between Organic Molecules and Plasmonic Nanostructures
121(30)
Robert J. Moerland
Tommi K. Hakala
Jani-Petri Martikainen
Heikki T. Rekola
Aaro I. Vakevainen
Paivi Torma
6.1 Introduction
121(3)
6.2 Theoretical Background
124(5)
6.2.1 Classical Approach
124(2)
6.2.2 Semi-Classical Approach
126(2)
6.2.3 Fully Quantum-Mechanical Approach
128(1)
6.3 Coupling of Organic Molecules with Plasmonic Structures
129(2)
6.4 Dynamics of Strong Coupling
131(3)
6.4.1 Frequency Domain
132(1)
6.4.2 Time Domain
133(1)
6.5 Surface Lattice Resonances
134(7)
6.5.1 Empty Lattice Approximation
135(2)
6.5.2 Lattice of Point Dipoles
137(3)
6.5.3 Band Gap Formation in SLR Dispersions
140(1)
6.6 Strong Coupling in Nanoparticle Arrays
141(6)
6.6.1 Spectral Transmittance Experiments
142(3)
6.6.2 Spatial Coherence of Strongly Coupled Hybrid Modes
145(2)
6.7 Outlook
147(4)
References
148(3)
7 Polariton Condensation in Organic Semiconductors
151(14)
Konstantinos S. Daskalakis
Stefan A. Maier
Stephane Kena-Cohen
7.1 Introduction
151(1)
7.2 What Is a Condensate?
152(1)
7.3 Planar Microcavity Structures
153(3)
7.4 Polariton Relaxation
156(2)
7.5 Condensate Formation
158(2)
7.6 Condensate Coherence
160(2)
7.7 Conclusions
162(3)
References
163(2)
8 Plasmon Particle Array Lasers
165(26)
Y. Hadad
A. H. Schokker
F. van Riggelen
A. Alu
A. F. Koenderink
8.1 Introduction
166(1)
8.2 Experiments on Plasmon Lattice Laser
167(4)
8.2.1 Samples and Experimental Methods
167(2)
8.2.2 Input-Output Curves, Thresholds and Fourier Space
169(2)
8.3 Theory of Plasmon Lattices Coupled to Stratified Media
171(10)
8.3.1 Two-Dimensional Periodic Arrays, Folded Dispersion, and the "Nearly Free-Photon" Approximation
172(1)
8.3.2 Surface Lattice Resonances
173(1)
8.3.3 Semi-analytical Approach: Polarizability and Lattice Sums
174(4)
8.3.4 Theoretical Model---Results
178(2)
8.3.5 Stop Gap and Band Crossing
180(1)
8.4 Open Questions for Periodic Plasmon Lasers
181(1)
8.5 Scattering, Aperiodic and Finite Lasers
182(3)
8.6 Conclusions
185(6)
Appendix A ID Green's Function
185(1)
Appendix B Ewald Summation
186(2)
References
188(3)
9 Surface Plasmon Enhanced Schottky Detectors
191(20)
Pierre Berini
9.1 Introduction
191(1)
9.2 SPPs and Photodetection Mechanisms
192(4)
9.3 Grating Detectors
196(3)
9.4 Nanoparticle and Nanoantenna Detectors
199(3)
9.5 Waveguide Detectors
202(5)
9.6 Summary and Prospects
207(4)
References
208(3)
10 Antenna-Coupled Tunnel Junctions
211(26)
Markus Parzefall
Palash Bharadwaj
Lukas Novotny
10.1 Introduction
211(2)
10.2 Theoretical Framework
213(7)
10.2.1 Historical Survey
213(1)
10.2.2 Photon Emission: A Two-Step Process
213(1)
10.2.3 Tunneling Rates
214(6)
10.3 Coupling Tunnel Junctions to Free Space
220(10)
10.3.1 Macroscopic Solid State Tunnel Devices
220(4)
10.3.2 Scanning Tunneling Microscope
224(1)
10.3.3 Antenna-Coupled Tunnel Junctions
225(5)
10.3.4 Conclusion
230(1)
10.4 Outlook
230(3)
10.4.1 Ultrafast Photon/SPP Sources
230(1)
10.4.2 LDOS and Impedance Matching Optimization
230(2)
10.4.3 Beyond MIM Devices
232(1)
10.4.4 Resonant Tunneling
232(1)
10.4.5 Stimulated Emission
232(1)
10.4.6 Beyond Visible Light Emission
233(1)
10.5 Summary
233(4)
References
233(4)
11 Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion
237(42)
Brian Wells
Pavel Ginzburg
Viktor A. Podolskiy
Anatoly V. Zayats
11.1 Introduction
238(2)
11.2 Nonlocal Effective Medium Theory
240(18)
11.2.1 Calculation of Ez and Hz
241(1)
11.2.2 Calculation of Er, Hr, Eφ, and Hφ
242(2)
11.2.3 Applying the Boundary Conditions at r = R
244(2)
11.2.4 Dispersion of the Longitudinal Mode
246(3)
11.2.5 Solutions at Oblique Angles
249(3)
11.2.6 Wave Profiles at Oblique Angles
252(1)
11.2.7 Simplified Approach to Nonlocal Effective Medium Theory
253(1)
11.2.8 Nonlocal Transfer Matrix Method
254(4)
11.3 Dipole Emission in Nonlocal Metamaterials
258(13)
11.3.1 Plane Wave Expansion of Green's Function in Homogeneous Material
261(4)
11.3.2 Spontaneous Decay Rates Near Planar Interfaces
265(2)
11.3.3 Emission in Lossless Metamaterials and Local Field Corrections
267(2)
11.3.4 Effects of Finite Material Absorption
269(1)
11.3.5 Non-Local Field Correction Approach
269(2)
11.4 Experimental Results on Collective Purcell Enhancement
271(3)
11.5 Conclusion
274(5)
References
274(5)
12 Nonlocal Response in Plasmonic Nanostructures
279(24)
Martijn Wubs
N. Asger Mortensen
12.1 Introduction
279(2)
12.2 Linear-Response Theory
281(3)
12.3 Linear-Response Electrodynamics
284(1)
12.4 Hydrodynamic Drift-Diffusion Theory
285(3)
12.5 Boundary Conditions
288(1)
12.6 Numerical Implementations
289(2)
12.7 Characteristic Material Parameters
291(1)
12.8 A Unifying Description of Monomers and Dimers
292(4)
12.9 The Origin of Diffusion: Insight from ab Initio studies
296(3)
12.10 Conclusions and Outlook
299(4)
References
300(3)
13 Landau Damping---The Ultimate Limit of Field Confinement and Enhancement in Plasmonic Structures
303(20)
Jacob B. Khurgin
Greg Sun
13.1 Introduction
303(2)
13.2 Spill Out and Nonlocality in the Hydrodynamic Model
305(1)
13.3 Landau Damping as the Cause of Nonlocality
306(5)
13.4 Limits of Confinement in Propagating SPP
311(3)
13.5 Landau (Surface Collision) Damping in Multipole Modes of Spherical Nanoparticles
314(3)
13.6 Impact of Landau (Surface Collision) Damping on Field Enhancement in Dimer
317(3)
13.7 Conclusions
320(3)
References
321(2)
Index 323
CV of Prof. S. I. Bozhevolnyi





Sergey I. Bozhevolnyi has received the degrees of M.Sc. in physics (1978) and Ph.D. in quantum electronics (1981) from the Moscow Physical Technical Institute, a.k.a. FizTech, and Dr.Scient. from Aarhus University, Denmark (1998). He has been working at Aalborg University (Denmark) in 1991-2008. During 20012004, he was also the Chief Technical Officer (CTO) of Micro Managed Photons A/S set up to commercialize plasmonic waveguides. Since February 2008 he is a professor at the University of Southern Denmark (Odense), heading since 2013 the Centre for Nano Optics. His research interests include linear and nonlinear nano-optics and nanophotonics, including multiple light scattering phenomena, surface plasmon polaritons and nano-plasmonic circuits. He has (co-) authored more than 400 scientific publications in peer-reviewed journals (citations > 12000, h-index: 50). Prof. Bozhevolnyi is a Fellow of the Optical Society of America.





 





CV of Prof. L. Martin-Moreno





Luis Martin-Moreno has received the degrees of M.Sc. in physics (1985) and Ph.D. (1989) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid and Universidad de Zaragoza, before becoming a Professor at the Instituto de Ciencia de Materiales de Aragon (Consejo Superior de Investigaciones Cienticas) since 2008. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 11900, h-index: 52). Prof. L. Martin-Moreno was selected in 2014 as Highly Cited Researcher by Thomson Reuters based on the scientific publications during the previous 10 years.





 





CV of Prof. F. J. Garcķa-Vidal





Francisco J. Garcķa-Vidal has received the degrees of M.Sc. in physics (1988) and Ph.D. (1992) from Universidad Autonoma de Madrid (Spain). He has been working at Universidad Autonoma de Madrid since 1992, becoming a Full Professor in 2007, and as a guest researcher at Imperial College London, Université Louis Pasteur (Strasbourg) and University of California. His research interests include theoretical electrodynamics and solid-state physics, including plasmonics, metamaterials, acoustics and graphene. He has (co-) authored more than 210 scientific publications in peer-reviewed journals (citations > 13900, h-index: 53). Prof. F. J. Garcķa-Vidal was selected in 2014 for the list of the 144 most influential physicists of the decade 2002-2012 elaborated by Thomson Reuters.