Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quantum Theory and Statistical Thermodynamics: Principles and Worked Examples

  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 16-Aug-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319585956
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 16-Aug-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319585956

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook presents a concise yet detailed introduction to quantum physics. Concise, because it condenses the essentials to a few principles. Detailed, because these few principles   necessarily rather abstract are illustrated by several telling examples. A fairly complete overview of the conventional quantum mechanics curriculum is the primary focus, but the huge field of statistical thermodynamics is covered as well.

The text explains why a few key discoveries shattered the prevailing broadly accepted classical view of physics. First, matter appears to consist of particles which, when propagating, resemble waves. Consequently, some observable properties cannot be measured simultaneously with arbitrary precision. Second, events with single particles are not determined, but are more or less probable. The essence of this is that the observable properties of a physical system are to be represented by non-commuting mathematical objects instead of real numbers. 

Chapters on exceptionally simple, but highly instructive examples illustrate this abstract formulation of quantum physics. The simplest atoms, ions, and molecules are explained, describing their interaction with electromagnetic radiation as well as the scattering of particles. A short introduction to many particle physics with an outlook on quantum fields follows. There is a chapter on maximally mixed states of very large systems, that is statistical thermodynamics. The following chapter on the linear response to perturbations provides a link to the material equations of continuum physics. Mathematical details which would hinder the flow of the main text have been deferred to an appendix.





The book addresses university students of physics and related fields. It will attract graduate students and professionals in particular who wish to systematize or refresh their knowledge of quantum physics when studying specialized texts on solid state and materials physics, advanced

optics, and other modern fields.

Recenzijas

The textbook is intended for students of general physics, chemistry, molecular biology, material science and even for philosophical minded readers. The many worked examples are presented at various levels of abstraction. (Vladimir Dzhunushaliev, zbMATH 1379.81009, 2018)

1 Basics
1(30)
1.1 Introduction
2(4)
1.1.1 The Quantum of Light
2(1)
1.1.2 Electron Diffraction
3(1)
1.1.3 Heisenberg Uncertainty Principle
4(1)
1.1.4 Does God Play Dice?
5(1)
1.1.5 Summary
6(1)
1.2 Classical Framework
6(6)
1.2.1 Phase Space
7(1)
1.2.2 Observables
8(1)
1.2.3 Dynamics
8(2)
1.2.4 States
10(1)
1.2.5 Properties of Poisson Brackets
10(1)
1.2.6 Canonical Relations
11(1)
1.2.7 Pure and Mixed States
11(1)
1.2.8 Summary
12(1)
1.3 Quantum Framework
12(10)
1.3.1 q-Numbers
13(1)
1.3.2 Hilbert Space
13(1)
1.3.3 Linear Operators
14(2)
1.3.4 Projectors
16(1)
1.3.5 Normal Linear Operators
17(2)
1.3.6 Trace of an Operator
19(1)
1.3.7 Expectation Values
20(1)
1.3.8 Summary
21(1)
1.4 Time and Space
22(9)
1.4.1 Measurement and Experiment
23(1)
1.4.2 Time Translation
24(1)
1.4.3 Space Translation
25(1)
1.4.4 Location
25(1)
1.4.5 Rotation
26(1)
1.4.6 Orbital Angular Momentum and Spin
27(1)
1.4.7 Schrodinger Picture
28(1)
1.4.8 Summary
29(2)
2 Simple Examples
31(34)
2.1 Ammonia Molecule
31(7)
2.1.1 Hilbert Space and Energy Observable
33(1)
2.1.2 Ammonia Molecule in an External Electric Field
34(1)
2.1.3 Dipole Moment Expectation Value
35(1)
2.1.4 Ammonium Maser
36(1)
2.1.5 Summary
37(1)
2.2 Quasi-Particles
38(8)
2.2.1 Hilbert Spaces Cn and l2
38(2)
2.2.2 Hopping Model
40(1)
2.2.3 Wave Packets
41(1)
2.2.4 Group Velocity and Effective Mass
42(1)
2.2.5 Scattering at Defects
43(2)
2.2.6 Trapping by Defects
45(1)
2.2.7 Summary
46(1)
2.3 Neutron Scattering on Molecules
46(7)
2.3.1 Feynman's Approach
47(1)
2.3.2 Spherical and Plain Waves
48(1)
2.3.3 Neutron Scattering on a Diatomic Molecule
48(1)
2.3.4 Cross Section
49(1)
2.3.5 Orientation Averaged Cross Section
50(2)
2.3.6 Neutron Diffraction
52(1)
2.3.7 Summary
53(1)
2.4 Free Particles
53(7)
2.4.1 Square Integrable Functions
54(1)
2.4.2 Location
55(1)
2.4.3 Linear Momentum
55(2)
2.4.4 Wave Packets
57(1)
2.4.5 Motion of a Free Particle
58(1)
2.4.6 Spreading of a Free Particle
59(1)
2.4.7 Summary
60(1)
2.5 Small Oscillations
60(5)
2.5.1 The Hamitonian
61(1)
2.5.2 Ladder Operators
62(1)
2.5.3 Eigenstate Wave Functions
63(1)
2.5.4 Summary
64(1)
3 Atoms and Molecules
65(46)
3.1 Radial Schrodinger Equation
66(6)
3.1.1 Spherical Coordinates
66(1)
3.1.2 The Laplacian
67(1)
3.1.3 Spherical Harmonics
67(2)
3.1.4 Spherical Symmetric Potential
69(1)
3.1.5 Behavior at Origin and Infinity
70(1)
3.1.6 Alternative Form
71(1)
3.1.7 Summary
71(1)
3.2 Hydrogen Atom
72(10)
3.2.1 Atomic Units
72(2)
3.2.2 Non-relativistic Hydrogen Atom
74(1)
3.2.3 Orbitals
75(2)
3.2.4 Relativistic Hydrogen Atom
77(3)
3.2.5 Classical Hydrogen Atom
80(1)
3.2.6 Summary
81(1)
3.3 Helium Atom
82(7)
3.3.1 Wave Functions
82(2)
3.3.2 Minimal Ground State Energy
84(2)
3.3.3 Sample Calculation
86(2)
3.3.4 The Negative Hydrogen Ion
88(1)
3.3.5 Summary
88(1)
3.4 Hydrogen Molecule
89(7)
3.4.1 Wave Functions and Hamiltonian
89(2)
3.4.2 Born--Oppenheimer Approximation
91(1)
3.4.3 The Molecular Potential
91(2)
3.4.4 Molecular Vibrations
93(2)
3.4.5 Molecular Rotations
95(1)
3.4.6 Summary
95(1)
3.5 More on Approximations
96(6)
3.5.1 The Minimax Theorem
97(1)
3.5.2 Remarks
98(2)
3.5.3 Stationary Perturbations
100(1)
3.5.4 Coping with Degeneracies
101(1)
3.5.5 Summary
101(1)
3.6 Stark and Zeeman Effect
102(9)
3.6.1 Multipoles
102(3)
3.6.2 Electric Dipole Moment
105(1)
3.6.3 Stark Effect
106(2)
3.6.4 Magnetic Dipole Moment
108(1)
3.6.5 Zeeman Effect
109(1)
3.6.6 Summary
110(1)
4 Decay and Scattering
111(26)
4.1 Forced Transitions
112(7)
4.1.1 Time Dependent External Field
112(3)
4.1.2 Detailed Balance
115(1)
4.1.3 Incoherent Radiation
115(4)
4.1.4 Summary
119(1)
4.2 Spontaneous Transitions
119(4)
4.2.1 Einstein's Argument
119(2)
4.2.2 Lifetime of an Excited State
121(1)
4.2.3 Comment on Einstein's Reasoning
121(1)
4.2.4 Classical Limit
122(1)
4.2.5 Summary
123(1)
4.3 Scattering Amplitude
123(6)
4.3.1 Cross Section
124(1)
4.3.2 Scattering Amplitude
125(1)
4.3.3 Center of Mass and Laboratory Frame
126(2)
4.3.4 Relativistic Description
128(1)
4.3.5 Summary
129(1)
4.4 Coulomb Scattering
129(8)
4.4.1 Scattering Schrodinger Equation
130(1)
4.4.2 Bom Approximation
131(1)
4.4.3 Scattering of Point Charges
132(1)
4.4.4 Electron-Hydrogen Atom Scattering
133(1)
4.4.5 Form Factor and Structure
134(2)
4.4.6 Summary
136(1)
5 Thermal Equilibrium
137(88)
5.1 Entropy and the Gibbs State
138(12)
5.1.1 Observables and States
139(2)
5.1.2 First Main Law
141(1)
5.1.3 Entropy
142(3)
5.1.4 Second Main Law
145(1)
5.1.5 The Gibbs State
146(1)
5.1.6 Free Energy and Temperature
147(1)
5.1.7 Chemical Potentials
148(1)
5.1.8 Minimal Free Energy
149(1)
5.1.9 Summary
150(1)
5.2 Thermodynamics
150(10)
5.2.1 Reversible and Irreversible Processes
151(1)
5.2.2 Free Energy as Thermodynamic Potential
152(1)
5.2.3 More Thermodynamic Potentials
153(1)
5.2.4 Heat Capacity and Compressibility
154(2)
5.2.5 Chemical Potential
156(2)
5.2.6 Chemical Reactions
158(1)
5.2.7 Particle Number as an External Parameter
158(2)
5.2.8 Summary
160(1)
5.3 Continuum Physics
160(13)
5.3.1 Material Points
161(1)
5.3.2 Balance Equations
162(1)
5.3.3 Particles, Mass and Electric Charge
163(2)
5.3.4 Conduction and Covariance
165(2)
5.3.5 Momentum, Energy, and the First Main Law
167(3)
5.3.6 Entropy and the Second Main Law
170(2)
5.3.7 Summary
172(1)
5.4 Second Quantization
173(7)
5.4.1 Number Operators
173(2)
5.4.2 Plane Waves
175(1)
5.4.3 Local Quantum Field
175(1)
5.4.4 Fermions
176(2)
5.4.5 Some Observables
178(1)
5.4.6 Time
179(1)
5.4.7 Summary
180(1)
5.5 Gases
180(18)
5.5.1 Fermi Gas
181(3)
5.5.2 Bose Gas
184(2)
5.5.3 Black-Body Radiation
186(1)
5.5.4 Boltzmann Gas
187(3)
5.5.5 Rotating and Vibrating Molecules
190(2)
5.5.6 Cluster Expansion
192(2)
5.5.7 Joule-Thomson Effect
194(2)
5.5.8 Summary
196(2)
5.6 Crystal Lattice Vibrations
198(9)
5.6.1 Phenomenological Description
198(2)
5.6.2 Phonons
200(7)
5.6.3 Summary
207(1)
5.7 Electronic Band Structure
207(7)
5.7.1 Hopping Model
208(1)
5.7.2 Fermi-Energy
209(2)
5.7.3 The Cold Solid
211(1)
5.7.4 Metals, Dielectrics and Semiconductors
212(1)
5.7.5 Summary
213(1)
5.8 External Fields
214(11)
5.8.1 Matter and Electromagnetic Fields
214(3)
5.8.2 Alignment of Electric Dipoles
217(1)
5.8.3 Alignment of Magnetic Dipoles
218(2)
5.8.4 Heisenberg Ferromagnet
220(3)
5.8.5 Summary
223(2)
6 Fluctuations and Dissipation
225(36)
6.1 Fluctuations
226(11)
6.1.1 An Example
227(1)
6.1.2 Density Fluctuations
228(2)
6.1.3 Correlations and Khinchin's Theorem
230(2)
6.1.4 Thermal Noise of a Resistor
232(1)
6.1.5 Langevin Equation
232(2)
6.1.6 Nyquist Formula
234(2)
6.1.7 Remarks
236(1)
6.1.8 Summary
236(1)
6.2 Brownian Motion
237(7)
6.2.1 Einstein's Explanation
237(4)
6.2.2 The Diffusion Coefficient
241(1)
6.2.3 Langevin's Approach
242(2)
6.2.4 Summary
244(1)
6.3 Linear Response Theory
244(9)
6.3.1 Perturbations
245(5)
6.3.2 Dispersion Relations
250(2)
6.3.3 Summary
252(1)
6.4 Dissipation
253(8)
6.4.1 Wiener--Khinchin Theorem
253(1)
6.4.2 Kubo--Martin--Schwinger Formula
254(1)
6.4.3 Callen--Welton Theorem
255(2)
6.4.4 Interaction with an Electromagnetic Field
257(2)
6.4.5 Summary
259(2)
7 Mathematical Aspects
261(60)
7.1 Topological Spaces
261(7)
7.1.1 Abstract Topological Space
262(1)
7.1.2 Metric Space
263(1)
7.1.3 Linear Space with Norm
264(1)
7.1.4 Linear Space with Scalar Product
265(1)
7.1.5 Convergent Sequences
265(1)
7.1.6 Continuity
266(1)
7.1.7 Cauchy Sequences and Completeness
267(1)
7.2 The Lebesgue Integral
268(4)
7.2.1 Measure Spaces
268(1)
7.2.2 Measurable Functions
269(1)
7.2.3 The Lebesgue Integral
270(1)
7.2.4 Function Spaces
271(1)
7.3 On Probabilities
272(5)
7.3.1 Probability Spaces
272(1)
7.3.2 Random Variables
273(3)
7.3.3 Law of Large Numbers and Central Limit Theorem
276(1)
7.4 Generalized Functions
277(6)
7.4.1 Test Functions
278(1)
7.4.2 Distributions
278(1)
7.4.3 Derivatives
279(1)
7.4.4 Fourier Transforms
280(3)
7.5 Linear Spaces
283(3)
7.5.1 Scalars
284(1)
7.5.2 Vectors
284(1)
7.5.3 Linear Subspaces
284(1)
7.5.4 Dimension
285(1)
7.5.5 Linear Mappings
285(1)
7.5.6 Ring of Linear Operators
285(1)
7.6 Hilbert Spaces
286(3)
7.6.1 Operator Norm
288(1)
7.6.2 Adjoint Operator
288(1)
7.7 Projection Operators
289(2)
7.7.1 Projectors
289(2)
7.7.2 Decomposition of Unity
291(1)
7.8 Normal Operators
291(5)
7.8.1 Spectra] Decomposition
291(2)
7.8.2 Unitary Operators
293(1)
7.8.3 Self-Adjoint Operators
294(1)
7.8.4 Positive Operators
295(1)
7.8.5 Probability Operators
295(1)
7.9 Operator Functions
296(2)
7.9.1 Power Series
296(1)
7.9.2 Normal Operator
297(1)
7.9.3 Comparison
297(1)
7.9.4 Example
297(1)
7.10 Translations
298(4)
7.10.1 Periodic Boundary Conditions
299(1)
7.10.2 Domain of Definition
299(1)
7.10.3 Selfadjointness
300(1)
7.10.4 Spectral Decomposition
301(1)
7.11 Fourier Transform
302(4)
7.11.1 Fourier Series
302(1)
7.11.2 Fourier Expansion
303(1)
7.11.3 Fourier Integral
303(1)
7.11.4 Convolution Theorem
304(2)
7.12 Position and Momentum
306(3)
7.12.1 Test Functions
306(1)
7.12.2 Canonical Commutation Rules
307(1)
7.12.3 Uncertainty Relation
308(1)
7.12.4 Quasi-Eigenfunctions
308(1)
7.13 Ladder Operators
309(5)
7.13.1 Raising and Lowering Operators
310(1)
7.13.2 Ground State and Excited States
310(1)
7.13.3 Harmonic Oscillator
311(1)
7.13.4 Quantum Fields
312(2)
7.14 Transformation Groups
314(7)
7.14.1 Group
314(1)
7.14.2 Finite Groups
314(1)
7.14.3 Topological Groups
315(3)
7.14.4 Angular Momentum
318(3)
Glossary 321(40)
Index 361
Prof. Dr. Peter Hertel studied physics, mathematics and philosophy at the universities of Hamburg (Germany), London (Imperial College, UK) and Vienna (Austria) where he received his Ph.D. His scientific career led him to Heidelberg (Germany), CERN (Geneva, Switzerland), Vienna and Osnabrück (Germany) where he was appointed full professor. Although retired by now, he continues lecturing at the Applied Physics School of Nankai University (Tianjin, China). His research interests were elementary particles, statistical thermodynamics, theoretical optics and computational physics. For more than 40 years he has taught practically all subjects of theoretical physics and mathematics at different levels