Atjaunināt sīkdatņu piekrišanu

E-grāmata: Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 94,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.
Chapter 1 Introduction
1(10)
1.1 Example applications
2(1)
1.2 The methods of proof: a special case
3(1)
1.3 The general setting
4(3)
1.4 Statements of results
7(2)
1.5 Structure of the paper
9(2)
Chapter 2 Preliminaries
11(18)
2.1 Coarse language
11(3)
2.2 Coarse properties of subgroups
14(1)
2.3 Coboundedness principle
15(2)
2.4 Bass-Serre trees and Bass-Serre complexes
17(2)
2.5 Irreducible graphs of groups
19(2)
2.6 Coarse PD(n) spaces and groups
21(5)
2.7 The methods of proof: the general case
26(3)
Chapter 3 Depth Zero Vertex Rigidity
29(20)
3.1 A sufficient condition for depth zero vertex rigidity
30(6)
3.2 Proof of the Depth Zero Vertex Rigidity Theorem
36(13)
Chapter 4 Finite Depth Graphs of Groups
49(10)
4.1 Definitions and examples
49(4)
4.2 Proof of the Vertex--Edge Rigidity Theorem 2.11
53(3)
4.3 Reduction of finite depth graphs of groups
56(3)
Chapter 5 Tree Rigidity
59(28)
5.1 Examples and motivations
59(1)
5.2 Outline of the Tree Rigidity Theorem
60(1)
5.3 Special case: isolated edge spaces
61(3)
5.4 Special case: all edges have depth one
64(17)
5.4.1 Proof of Lemma 5.5: an action on a 2-complex
71(3)
5.4.2 Proof of the Tracks Theorem 5.7
74(7)
5.5 Proof of the Tree Rigidity Theorem
81(6)
Chapter 6 Main Theorems
87(2)
Chapter 7 Applications and Examples
89(12)
7.1 Patterns of edge spaces in a vertex space
89(1)
7.2 Hn vertex groups and Z edge groups
90(1)
7.3 H3 vertex groups and surface fiber edge groups
91(1)
7.4 Surface vertex groups and cyclic edge groups
92(2)
7.5 Graphs of abelian groups
94(2)
7.6 Quasi-isometry groups and classification
96(5)
Bibliography 101(4)
Index 105