Atjaunināt sīkdatņu piekrišanu

E-grāmata: Radar Meteorology: A First Course

(University of Illinois, Urbana-Champaign, USA), (University of Illinois, Urbana-Champaign, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 74,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A comprehensive introduction to the current technology and application of radar in meteorology and atmospheric sciences

Written by leading experts in the field, Radar Meteorology, A first Course offers an introduction to meteorological radar systems and applications, with emphasis on observation and interpretation of physical processes in clouds and weather systems. This comprehensive introduction to the subject offers an overview of the quantities essential to radar meteorology including the radar reflectivity factor, and Doppler, dual-polarization, and multi-wavelength radar variables. The authors highlight wind retrieval from single and multiple Doppler radars, precipitation estimation and hydrometeorological applications, with chapters dedicated to interpretation of radar data from warm season mid-latitude severe weather, winter storms, tropical cyclones and more.

In addition, Radar Meteorology highlights research applications of this burgeoning technology, exploring dynamic applications such as space-borne and ground-based vertically pointing radar systems, and cloud, airborne and mobile radars.  As meteorological radars are increasingly used professionally for weather observation, forecasting and warning, this much-needed text:





Presents an introduction to the technical aspects and current application of radar as used in the meteorology and atmospheric sciences Contains full-colour illustrations that enhance the understanding of the material presented Examines the wide-range of meteorological applications of radar Includes problems at the end of each chapter as a helpful review of the contents Provides full instructor support with all illustrations and answers to problems available via the books instructor website.

Radar Meteorology offers a much-needed introductory text to the study of radar as applied to meteorology. The text was designed for a one semester course based on the authors' own course in Radar Meteorology at the University of Illinois at Urbana-Champaign.
Preface xvii
Acknowledgments xxi
About the Companion Website xxiii
1 Properties of Electromagnetic Waves 1(22)
1.1 Introduction
1(1)
1.2 Electric and magnetic fields
2(6)
1.2.1 The electric field
2(2)
1.2.2 The magnetic field
4(1)
1.2.3 Relating the electric and magnetic fields-a simple dipole antenna
5(1)
1.2.4 Maxwell equations
6(2)
1.3 The nature of electromagnetic radiation
8(3)
1.3.1 The electromagnetic spectrum
8(1)
1.3.2 Electromagnetic wave interactions
9(2)
1.4 Interactions of electromagnetic waves with matter
11(7)
1.4.1 Refraction
12(1)
1.4.2 Reflection
12(2)
1.4.3 Mie scattering
14(3)
1.4.4 Bragg scattering
17(1)
1.4.5 Absorption
18(1)
1.5 Polarization of electromagnetic waves
18(2)
Important terms
20(1)
Review questions
21(1)
Challenge problems
22(1)
2 Radar Hardware 23(26)
2.1 Introduction
23(1)
2.2 Frequency and wavelength
23(2)
2.3 Components of a weather radar system
25(15)
2.3.1 Transmitter section
26(2)
2.3.2 Waveguides, rotary joints, polarization switching devices, and circulators
28(4)
2.3.3 The antenna section
32(4)
2.3.4 The receiver section
36(2)
2.3.5 Magnetron transmitters
38(2)
2.4 Specialized radar systems
40(1)
2.4.1 Phased-array radars
40(1)
2.4.2 Mobile and deployable radars
41(2)
2.4.3 Airborne radars
43(1)
2.4.4 Spaceborne radars
44(2)
Important terms
46(1)
Review questions
47(1)
Challenge problems
47(2)
3 Radar Characteristics 49(17)
3.1 Introduction
49(1)
3.2 Range and range ambiguity
50(3)
3.3 The transmitted and received signal
53(3)
3.3.1 Pulse duration and pulse length
54(1)
3.3.2 Power and the duty cycle
54(2)
3.4 Radar geometry and types of displays
56(8)
3.4.1 Common radar displays in spherical coordinates
56(8)
Important terms
64(1)
Review questions
64(1)
Challenge problems
65(1)
4 The Path of a Radar Ray 66(16)
4.1 Introduction
66(1)
4.2 Ray propagation in an idealized atmosphere
67(7)
4.2.1 Factors influencing radar ray paths
67(2)
4.2.2 The path of a ray in an idealized atmosphere
69(3)
4.2.3 The range and height of a pulse volume in space
72(2)
4.3 Anomalous propagation
74(4)
Important terms
78(1)
Review questions
79(1)
Challenge problems
80(2)
5 Power and the Radar Reflectivity Factor 82(22)
5.1 Introduction
82(1)
5.2 Radar equation for a solitary target
83(6)
5.2.1 Power flux density incident on a target
83(2)
5.2.2 Power flux density scattered back to the radar
85(1)
5.2.3 Backscattered power collected by the radar antenna
86(1)
5.2.4 Implications of the radar equation
87(2)
5.3 Radar equation for a distributed target
89(6)
5.3.1 The contributing volume for distributed targets
89(2)
5.3.2 The radar cross section of distributed targets
91(3)
5.3.3 The radar equation for a distributed target
94(1)
5.4 The weather radar equation
95(5)
5.4.1 Radar cross section of a small dielectric sphere
95(1)
5.4.2 The radar reflectivity factor
96(1)
5.4.3 The weather radar equation
97(1)
5.4.4 The validity of the Rayleigh approximation
98(2)
5.5 Summary
100(1)
Important terms
101(1)
Review questions
101(1)
Challenge problems
102(2)
6 Radial Velocity-The Doppler Effect 104(22)
6.1 Introduction
104(2)
6.2 Measurement of radial velocity
106(9)
6.2.1 Phase measurements and radial velocity retrieval
107(1)
6.2.2 Velocity ambiguities and their resolution
108(7)
6.3 Doppler spectra
115(4)
6.3.1 Doppler spectra of weather and other targets
116(1)
6.3.2 Moments of the Doppler spectrum
117(2)
6.4 Measurement of the Doppler moments
119(3)
6.5 Summary
122(1)
Important terms
123(1)
Review questions
123(1)
Challenge problems
124(2)
7 Dual-Polarization Radar 126(57)
7.1 Introduction
126(1)
7.2 The physical bases for radar polarimetry
127(3)
7.3 Measuring polarimetric quantities
130(2)
7.4 Reflectivity, differential reflectivity, and linear depolarization ratio
132(17)
7.4.1 Reflectivity factor in the dual-polarization framework (ZHH and ZVV)
132(1)
7.4.2 Differential reflectivity (ZDR)
133(1)
7.4.3 Raindrop shapes and sizes
134(4)
7.4.4 ZDR measurements in rain
138(3)
7.4.5 ZDR measurements in ice and mixed-phase precipitation
141(4)
7.4.6 Linear depolarization ratio (LDR)
145(4)
7.5 Polarization and phase
149(27)
7.5.1 Propagation differential phase shift (PhiDP)
150(2)
7.5.2 Backscatter differential phase shift (delta)
152(1)
7.5.3 Specific differential phase (KDP)
152(3)
7.5.4 Retrieval of KDP
155(9)
7.5.5 Co-polar correlation coefficient (rhoHV)
164(4)
7.5.6 Using polarimetric variables together
168(1)
7.5.7 Covariation of the polarimetric variables: an example at S-and C-band
168(2)
7.5.8 Using dual-polarization variables to discern meteorological versus non-meteorological echo and non-uniform beam filling
170(2)
7.5.9 Hydrometeor classification
172(4)
Important terms
176(5)
Review questions
181(1)
Challenge problems
181(2)
8 Clear Air Echoes 183(22)
8.1 Introduction
183(1)
8.2 Ground clutter
184(7)
8.2.1 Ground clutter characteristics
184(1)
8.2.2 Sea clutter
185(3)
8.2.3 Effects of anomalous propagation
188(1)
8.2.4 Ground clutter mitigation
188(3)
8.3 Echoes from biological sources
191(4)
8.3.1 Insect echo
192(1)
8.3.2 Birds and bats
193(2)
8.4 Debris, dust, and smoke
195(1)
8.5 Aircraft echoes and chaff
196(2)
8.6 Other non-meteorological echo sources
198(2)
8.6.1 The sun
199(1)
8.6.2 Receiver noise
199(1)
8.6.3 Radio interference
200(1)
8.7 Bragg scattering
200(3)
Important terms
203(1)
Review questions
203(1)
Challenge problems
204(1)
9 Propagation Effects: Attenuation and Refractivity 205(27)
9.1 Introduction
205(1)
9.2 Attenuation
206(19)
9.2.1 Attenuation by atmospheric gases and measurement of water vapor
207(5)
9.2.2 Attenuation by cloud droplets and measurement of liquid water content
212(2)
9.2.3 Attenuation by rain and its correction
214(5)
9.2.4 Attenuation by hail
219(5)
9.2.5 Short-wavelength radars and attenuation
224(1)
9.3 Refractivity
225(4)
9.3.1 Basic principles
226(1)
9.3.2 Measurement of the water vapor field
227(2)
Important terms
229(1)
Review questions
229(1)
Challenge problems
230(2)
10 Operational Radar Networks 232(19)
10.1 Introduction
232(1)
10.2 The WSR-88D radar network
233(9)
10.2.1 Network coverage
233(1)
10.2.2 Radar characteristics and data distribution
234(2)
10.2.3 Scanning strategies
236(4)
10.2.4 Ground clutter suppression
240(1)
10.2.5 Super resolution
240(2)
10.2.6 Additional features
242(1)
10.3 Terminal Doppler weather radars
242(4)
10.3.1 Radar characteristics and data distribution
243(3)
10.4 International operational radar networks
246(2)
Important terms
248(1)
Review questions
249(1)
Challenge problems
249(2)
11 Doppler Velocity Patterns and Single-Radar Wind Retrieval 251(28)
11.1 Introduction
251(1)
11.2 Kinematic properties of the wind field
252(2)
11.3 Doppler radial velocity patterns and the wind field
254(7)
11.3.1 Large-scale flow patterns
255(2)
11.3.2 Fronts
257(2)
11.3.3 Convective scale flow patterns
259(2)
11.4 Wind retrieval with profiling radars
261(3)
11.4.1 Wind profilers
261(3)
11.5 Velocity-azimuth display wind retrieval
264(11)
11.5.1 VAD technique
264(8)
11.5.2 Extended VAD analysis
272(3)
Important terms
275(1)
Review questions
276(1)
Challenge problems
277(2)
12 Multiple Doppler Wind Retrieval 279(31)
12.1 Introduction
279(1)
12.2 Network design and deployment
279(5)
12.2.1 Meteorological considerations
281(1)
12.2.2 Sampling limitations
281(2)
12.2.3 Siting and logistics
283(1)
12.3 Characteristics of single Doppler data
284(6)
12.3.1 Geographic location of a range gate
284(1)
12.3.2 Characteristics of raw data
284(3)
12.3.3 Ambiguities and Doppler radar data editing
287(3)
12.4 Procedures for multiple Doppler syntheses
290(16)
12.4.1 Interpolation of data from spherical to Cartesian coordinates
290(2)
12.4.2 Transformation of radial velocities to orthogonal particle motion components
292(10)
12.4.3 Calculation of vertical motion from orthogonal wind components
302(2)
12.4.4 Uncertainty in vertical motion retrievals
304(2)
12.5 Summary
306(1)
Important terms
306(1)
Review questions
307(1)
Challenge problems
308(2)
13 Precipitation Estimation with Radar 310(28)
13.1 Introduction
310(1)
13.2 Measurement of precipitation rate, total precipitation, and particle size distributions
311(5)
13.2.1 Precipitation gauges
311(2)
13.2.2 Disdrometers
313(2)
13.2.3 Optical array probes
315(1)
13.3 Nature of particle size distributions
316(3)
13.3.1 The exponential size distribution
318(1)
13.3.2 The gamma size distribution
319(1)
13.4 Radar remote sensing of precipitation
319(7)
13.4.1 Determining Z-R relationships
322(1)
13.4.2 Challenges in precipitation estimation with radar
323(3)
13.5 Precipitation estimation using dual polarization
326(3)
13.6 Winter precipitation
329(1)
13.7 Measuring precipitation from space
330(4)
13.7.1 Tropical Rainfall Measuring Mission
332(1)
13.7.2 Global Precipitation Mission
332(2)
Important terms
334(1)
Review questions
334(1)
Challenge problems
335(3)
14 Warm Season Convection 338(23)
14.1 Introduction
338(1)
14.2 Mesoscale convective systems
339(10)
14.2.1 Radar-observed life cycle of an MCS
339(2)
14.2.2 Conceptual model of an MCS as observed with a research radar
341(2)
14.2.3 Radar signatures of hazardous weather in MCSs
343(2)
14.2.4 Frontal squall lines
345(4)
14.3 Supercell thunderstorms
349(9)
14.3.1 Tornado detection
352(2)
14.3.2 Radar signatures of supercells
354(2)
14.3.3 Hail detection
356(2)
14.4 Downbursts and wind shear
358(1)
Important terms
358(1)
Review questions
359(1)
Challenge problems
359(2)
15 Extratropical Cyclones 361(22)
15.1 Introduction
361(2)
15.2 Radar approaches to monitor cyclone mesostructure
363(3)
15.3 Mesoscale structures observable with radar
366(15)
15.3.1 The comma-cloud tail
367(4)
15.3.2 The comma-cloud head
371(10)
Important terms
381(1)
Review questions
381(1)
Challenge problems
382(1)
16 Tropical Cyclones 383(30)
16.1 Introduction
383(3)
16.2 Airborne and satellite radar systems for tropical cyclone research and operations
386(4)
16.2.1 NOAA WP-3D radar systems
386(2)
16.2.2 Other airborne radars used in hurricane research
388(1)
16.2.3 Satellite radars used in hurricane research
389(1)
16.3 Tropical cyclone structure and kinematics
390(15)
16.3.1 Eyewall and eye radar structure
395(4)
16.3.2 Radar structure of principal band
399(5)
16.3.3 Other bands within the hurricane vortex
404(1)
16.4 Operational use of radar to detect tropical cyclone hazards
405(6)
16.4.1 High winds and storm surge
405(2)
16.4.2 Heavy precipitation and flooding
407(2)
16.4.3 Tornadoes
409(2)
Important terms
411(1)
Review questions
411(1)
Challenge problems
412(1)
17 Clouds and Vertical Motions 413(22)
17.1 Introduction
413(1)
17.2 Cloud radars
414(7)
17.2.1 Advantages and disadvantages of cloud radars
415(2)
17.2.2 Examples of data from cloud radars
417(4)
17.3 Application of cloud radars
421(11)
17.3.1 Determining vertical motions in clouds
421(3)
17.3.2 Determining statistical cloud properties
424(4)
17.3.3 Understanding atmospheric and storm structure
428(4)
17.3.4 Understanding global cloud properties
432(1)
Important terms
432(1)
Review questions
433(1)
Challenge problems
433(2)
Appendix A: List of Variables (and
Chapters)
435(6)
Appendix B: Derivation of the Exact Equation for a Ray Path through a Spherically Stratified Atmosphere 441(2)
Index 443
Robert M. Rauber, Professor of Atmospheric Sciences, University of Illinois, Urbana-Champaign, USA.

Stephen W. Nesbitt, Professor of Atmospheric Sciences, University of Illinois, Urbana-Champaign, USA.