Atjaunināt sīkdatņu piekrišanu

Radiation Protection In The Health Sciences (With Problem Solutions Manual) (2nd Edition) 2nd Revised edition [Hardback]

(Royal Inst Of Tech, Sweden), (New York Univ, Usa)
  • Formāts: Hardback, 324 pages
  • Izdošanas datums: 18-Apr-2007
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812705961
  • ISBN-13: 9789812705969
  • Hardback
  • Cena: 158,75 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 324 pages
  • Izdošanas datums: 18-Apr-2007
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9812705961
  • ISBN-13: 9789812705969
This book takes a very practical approach to radiation protection and presents very readable information for anyone working in the radiation field or with radioactive material. Offering information rarely found elsewhere, the authors describe in detail both the basic principles and practical implementation recommendations of radiation protection. Each chapter includes self-assessment review questions and problems, with answers provided, to help readers master important information. Coupled with a teacher's manual, this book is highly suitable as an undergraduate text for students preparing for careers as X-ray, radiation oncology, or nuclear medicine technologists. It can also be used as a reference for residents in radiology and radiation oncology, medical personnel, or anyone working with radioactive materials such as those involved in homeland security/emergency services, or employed at a nuclear power plant.
Preface vii
Chapter 1 Fundamental Concepts 1
1.1 Need for Radiation Protection
2
1.2 Ionizing Radiation and Injury
3
1.3 The Structure of Matter
4
1.3.1 Atomic Electrons
5
1.3.2 The Nucleus
7
1.4 Radioactive or Nuclear Decay
8
1.4.1 Alpha Decay
8
1.4.2 Beta Decay
8
1.4.3 Gamma or Isomeric Decay
10
1.5 Direct and Indirect Ionization
11
1.5.1 General Interaction Mechanisms
11
1.5.2 Linear Energy Transfer
14
1.6 Interaction of Directly Ionizing Particles
14
1.6.1 Alpha Particles
14
1.6.2 Electrons
16
1.7 Interaction of Indirectly Ionizing Particles
17
1.7.1 Photons
18
1.7.2 Neutrons
21
1.8 Review Questions
24
1.9 Problems
25
Chapter 2 Detectors 27
2.1 Gas-Filled Detectors
28
2.1.1 Ionization Chambers
29
2.1.1.1 Principles of Operation
30
2.1.1.2 Electron Movement to Collector
30
2.1.2 Geiger Counters
31
2.1.2.1 Principles of Operation
32
2.1.2.2 Count Method
33
2.1.2.3 Quenching
34
2.1.2.4 Resolving Time
35
2.1.3 Proportional Counters
35
2.1.3.1 Principles of Operation
36
2.1.3.2 Physical Characteristics
36
2.1.3.3 Filling Gas
37
2.1.3.4 Resolving Time
37
2.1.4 Windowless Gas Flow Counters
37
2.2 Solid State Detectors
40
2.2.1 Scintillation Detectors
40
2.2.1.1 Principles of Operation
41
2.2.1.2 Light Collection
45
2.2.1.3 Resolving Time
46
2.2.1.4 Remarks
46
2.2.2 Semiconductor Detectors
47
2.2.2.1 Principles of Operation
47
2.2.2.2 Types of Junction Semiconductors Detectors
49
2.2.2.3 Operating Characteristics of Junction Detectors
53
2.3 Review Questions
57
2.4 Problems
58
Chapter 3 Units Associated with Radiation Protection 59
3.1 Exposure
59
3.2 Absorbed Dose
61
3.3 Kerma
62
3.4 Relative Biological Effectiveness and Radiation Protection
63
3.5 Equivalent Dose and Effective Dose
65
3.6 Other Dosimetric Quantities
67
3.7 Review Questions
69
3.8 Problems
70
Chapter 4 Biological Effects and Effective/Equivalent Dose Limits 71
4.1 Regulatory Agencies
73
4.2 Occupational Exposure
74
4.3 Biological Factors
74
4.4 Manifestation of Overexposure in Adults
77
4.5 Recommendations for Effective/Equivalent Dose Limitations
78
4.6 Use of Effective/Equivalent Dose Limits
82
4.7 Review Questions
83
4.8 Problems
84
Chapter 5 Common Survey and Calibration Instruments 85
5.1 Survey Monitors
85
5.1.1 Characteristics of an Effective Survey Instrument
86
5.1.2 Energy Characteristics
86
5.1.3 Ionization Chamber Survey Monitors
87
5.1.3.1 "Cutie Pie" Monitors
88
5.1.3.2 Digital Ionization Chamber Monitors
89
5.1.4 Geiger-Muller Monitors
89
5.1.5 Scintillation Monitors
92
5.1.6 Proportional Survey Monitors
92
5.1.6.1 Neutron Monitoring
93
5.1.6.2 Low-Energy Particle Monitoring
95
5.1.7 Survey Instruments for Container Monitoring and Emergency Situations
95
5.2 Calibration Instruments for Radiation Sources
97
5.2.1 Precision Electrometer/Dosemeter
97
5.2.2 Non-invasive Quality Assurance Test System
98
5.2.3 Patient Air Kerma Monitors
100
5.2.4 Calibration of Radioactive Sources
101
5.2.5 Calibration of Survey Monitors
102
5.3 Review Questions
104
5.4 Problems
105
Chapter 6 Personnel Monitors 107
6.1 General Characteristics
107
6.2 Delayed Readout Personnel Monitors
108
6.2.1 Film Badges
109
6.2.1.1 Advantages and Disadvantages
110
6.2.2 Thermoluminescent Dosimeters (TLDs)
111
6.2.2.1 Advantages and Disadvantages
112
6.2.3 Optically Stimulated Luminescence (OSL)
112
6.2.3.1 Advantages and Disadvantages
112
6.3 Immediate Readout Personnel Monitors
113
6.3.1 Solid State Devices
113
6.3.1.1 Advantages and Disadvantages
113
6.3.2 Ion Chamber Devices
114
6.3.2.1 Direct-Reading Monitors
114
6.3.2.2 Condenser-Type Pocket Chambers
115
6.3.2.3 Advantages and Disadvantages
115
6.4 Personal Alarm Dosimeters
116
6.4.1 Solid State Type Detectors
116
6.4.1.1 Advantages and Disadvantages
117
6.4.2 G-M Type Detectors
117
6.4.2.1 Advantages and Disadvantages
117
6.5 Personal Air Samplers
118
6.5.1 Advantages and Disadvantages
118
6.6 Other Personnel Monitoring Methods
119
6.7 Review Questions
119
6.8 Problems
120
Chapter 7 Practical Means of Radiation Protection 121
7.1 Time
121
7.2 Distance
122
7.3 Shielding
126
7.3.1 Half-Value Layer
126
7.3.2 Tenth-Value Layer
133
7.3.3 Polyenergetic Beams of Photons
134
7.4 Review Questions
135
7.5 Problems
135
Chapter 8 Principles Governing Specific Devices: Good Working Habits 137
8.1 Responsibility
137
8.2 Facility Design
138
8.3 Quality Assurance
138
8.4 Specific Recommendations for X-Ray Generating Equipment
142
8.4.1 Leakage, Beam Size Definition, and Beam Filtration
142
8.4.2 Control Devices
143
8.4.3 Protection of Patient and Operators
144
8.4.3.1 Protective Clothing
146
8.5 Specific Recommendations for Sealed Sources of Radioactivity
146
8.5.1 Collimated Sealed Sources
146
8.5.2 Noncollimated Sealed Sources
147
8.6 Specific Recommendations for Particle Accelerators
148
8.7 Specific Recommendations for Neutron Generators
149
8.8 Specific Recommendations for Unsealed Sources of Radioactivity
149
8.8.1 Common External Sources of Irradiation
150
8.8.2 Protection from External Sources of Irradiation
150
8.8.3 Common Internal Sources of Irradiation
152
8.8.4 Common Methods of Acquiring Internal Irradiation Sources
154
8.8.4.1 Inhalation
154
8.8.4.2 Ingestion
156
8.8.4.3 Absorption
157
8.8.5 Protection from Internal Sources of Irradiation
157
8.8.6 Specific Contamination Control Devices
159
8.8.6.1 Shields
159
8.8.6.2 Remote Handling Equipment
160
8.8.6.3 Decontamination Equipment
161
8.8.7 Management of Accidents
162
8.8.7.1 Confinement
162
8.8.7.2 Area Decontamination
162
8.8.7.3 Personnel Decontamination
163
8.9 Review Questions
164
8.10 Problems
166
Chapter 9 Radionuclides and the Law 167
9.1 Licensing
167
9.1.1 Nuclear Regulatory Commission
168
9.1.2 Radiation Control for Health and Safety Act of 1968
168
9.1.3 Authorization
169
9.2 Record Keeping
171
9.3 Area Posting and Radionuclide Labeling
172
9.4 Storage and Delivery
174
9.5 Transport
175
9.6 Radionuclides and Animals
177
9.7 Waste Disposal
177
9.8 Review Questions
179
9.9 Problems
180
Chapter 10 Shielding from External Radiation 181
10.1 Protection from External Unsealed γ-Ray Photons
182
10.2 Protection from Sources of X-Ray and Annihilation Photons
186
10.2.1 Primary Barriers
186
10.2.1.1 Weekly Work Load W
186
10.2.1.2 Use Factor U
186
10.2.1.3 Occupancy Factor T
187
10.2.1.4 Photon Energy
187
10.2.2 Scattered Radiation
189
10.2.3 Leakage Radiation
192
10.2.3.1 Scattered Radiation from CT Units
195
10.2.4 Special Considerations for PET Units
197
10.2.5 Barriers Against Neutron Generation by Linear Accelerators
197
10.2.6 Special Recommendations for Dental and Veterinary Units
198
10.3 Barriers for Sealed-Sources
198
10.4 Collimation
199
10.5 Review Questions
202
10.6 Problems
204
Chapter 11 Internal Dosimetry 205
11.1 Mean Absorbed Dose
205
11.2 Effective Half-Life
211
11.3 Accumulated Activity and Residence Time
213
11.4 Use of the MIRD Tables
219
11.5 Review Questions
221
11.6 Problems
222
Chapter 12 Absorbed Dose from External Photons 223
12.1 Kerma and Absorbed Dose in Air
223
12.2 Absorbed Dose to a Small Mass of Tissue Exposed in Free Space
224
12.2.1 Aeq and req
225
12.2.2 f Factor
225
12.3 The Bragg-Gray Principle
226
12.4 Other Absorbed Dose Calculation Methods
230
12.5 Absorbed Dose in Selected Diagnostic X-Ray Procedures
230
12.6 Conclusions
233
12.7 Review Questions
234
12.8 Problems
234
Appendix A The Units of Physics 235
Appendix B The Roentgen and the Rad 239
B.1 The Roentgen
239
B.2 The Rad
239
B.3 Equivalence between Roentgen and Rad
240
Appendix C Logarithms 241
Appendix D Greek Alphabet 243
Glossary 245
References 281
Answers to Problems 293
Index 297