Atjaunināt sīkdatņu piekrišanu

E-grāmata: Radio Frequency Source Coding Made Easy

  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces Radio Frequency Source Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.
1 Introduction to Source Coding
1(20)
1.1 Source Coding Defined
1(1)
1.2 Identification and Characterization of Input Signals
2(10)
1.2.1 Periodic Analog Signals
3(1)
1.2.2 Non-periodic Analog Signals
4(1)
1.2.3 Periodic Digital Signals
5(3)
1.2.4 A Non-periodic Digital Signals
8(2)
1.2.5 Clock and Data
10(2)
1.3 Noise
12(2)
1.3.1 Background
12(1)
1.3.2 Thermal Noise
13(1)
1.3.3 Shot Noise
13(1)
1.4 Interference
14(4)
1.4.1 Co-Channel Interference
14(1)
1.4.2 C/I Due to Multiple Interferers
15(2)
1.4.3 The Effect of Noise in Communication Channels and Shannon's Capacity Theorem
17(1)
1.5 Measurement and Quantification of Signals
18(2)
1.5.1 Decimal System
19(1)
1.5.2 Binary System
19(1)
1.6 Conclusions
20(1)
References
20(1)
2 Baseband Filters: Active RC Filters
21(26)
2.1 Introduction
21(1)
2.2 Voltage to Current Source
22(1)
2.3 Voltage to Current Transducer (Transconductance)
22(1)
2.4 Amplifiers
23(3)
2.4.1 Differential Amplifier
23(1)
2.4.2 Inverting Amplifier
24(1)
2.4.3 Non-inverting Amplifier
25(1)
2.5 Integrators Based on Transconductances
26(1)
2.6 Differential Integrators
26(3)
2.7 Simulation of Grounded Inductor
29(1)
2.8 Simulation of Floating Inductor
30(2)
2.9 Second Order Filters: The Biquad
32(4)
2.9.1 Lowpass Filter
32(1)
2.9.2 High Pass Filter
32(1)
2.9.3 Bandpass Filter
33(1)
2.9.4 Band Reject Filters
33(3)
2.10 Active Filters Based on Simulated Inductors
36(6)
2.10.1 LC Prototype Filter
36(1)
2.10.2 Transconductance Model of the Prototype Filter
37(2)
2.10.3 RC Active Equivalent of the LC Prototype Filter
39(3)
2.11 Higher Order Filters
42(4)
2.11.1 Third Order Lowpass Ladder Filter
42(2)
2.11.2 Fifth Order Lowpass Ladder Filter
44(2)
2.12 Conclusions
46(1)
References
46(1)
3 Switched Capacitor Building Blocks and Filters
47(18)
3.1 Switched Capacitor Resistor
47(2)
3.2 Switched-Capacitor Integrators and Transconductances
49(1)
3.3 Differential Integrator
50(1)
3.4 Z-Domain Analysis
51(4)
3.4.1 Switched Capacitor (Sc) Resistor
51(1)
3.4.2 Switched Capacitor (sC) Integrator
52(2)
3.4.3 Frequency Response of SC-Integrator
54(1)
3.5 Switched-Capacitor Biquad Filters
55(4)
3.5.1 Lowpass Filter
55(1)
3.5.2 Bandpass Filter
56(1)
3.5.3 Switched Capacitor Biquad
56(3)
3.6 Switched-Capacitor Filters Based on Simulated Inductors
59(5)
3.6.1 SC Realization of Second Order LC Filters
60(1)
3.6.2 SC Realization of Third Order LC Ladder Filters
61(3)
3.7 Conclusions
64(1)
References
64(1)
4 Pulse Code Modulation (PCM)
65(26)
4.1 Introduction to PCM
65(1)
4.2 Input Band-Limit Filter
66(1)
4.3 Sampling
67(1)
4.4 Aliasing
68(4)
4.4.1 Spectrum of Analog Signals Before Sampling
68(1)
4.4.2 Spectral Response Due to Nyquist Sampling
69(1)
4.4.3 Spectral Response Due to Oversampling (fs > 2 fm)
69(1)
4.4.4 Spectral Response Due to Under Sampling (Aliasing)
69(3)
4.5 Quantization
72(2)
4.5.1 Linear Quantization
72(1)
4.5.2 Drawback of Linear Quantization
73(1)
4.6 Non-linear Quantization
74(1)
4.7 Companding
74(2)
4.8 Digital to Analog Converter
76(2)
4.9 Analog to Digital Converter
78(5)
4.9.1 Function of the Comparator
79(1)
4.9.2 Function of the Up/Down Counter
79(1)
4.9.3 Function of the D/A Converter
80(1)
4.9.4 Overall Function of the A/D-D/A Converter
80(3)
4.10 Resolution
83(1)
4.11 Binary Line Coding and Power Spectrum
84(3)
4.11.1 Popular Binary Signaling Formats
85(2)
4.12 Bit Rate
87(1)
4.13 Bandwidth
88(1)
4.14 Conclusions
89(2)
References
89(2)
5 Time Division Multiplexing (TDM)
91(28)
5.1 Introduction
91(3)
5.2 North American TDM in Digital Telephony
94(3)
5.2.1 The Basic TDM Structure
94(1)
5.2.2 Distributed Frame Structure
95(1)
5.2.3 Bunched Frame Structure
96(1)
5.3 European TDM in Digital Telephony
97(1)
5.4 Frame Synchronization
98(3)
5.4.1 Synchronization Process
98(1)
5.4.2 Estimation of Frame Error Rate
98(3)
5.5 North American TDM Hierarchy
101(1)
5.6 Time Division Multiple Access (TDMA)
102(6)
5.6.1 The North American TDMA
102(1)
5.6.2 North American TDMA Scheme
103(1)
5.6.3 TDMA Transmission Format
104(1)
5.6.4 TDMA Time Slots and Data Field Structure
105(3)
5.7 Global System for Mobile Communication (GSM)
108(3)
5.7.1 GSM TDMA Scheme
108(1)
5.7.2 GSM TDMA Frame (4.615 ms)
108(1)
5.7.3 GSM TDMA Frame Hierarchy
109(2)
5.8 TDMA Performance
111(4)
5.8.1 Uncoded and Coded BER
111(1)
5.8.2 BER as a Function of Mobile Speed
112(3)
5.9 Conclusions
115(4)
References
118(1)
6 Phase Division Multiple Access (PDMA)
119(14)
6.1 Introduction
119(2)
6.2 Properties of Orthogonal Codes
121(3)
6.2.1 Orthogonal and Biorthogonal Codes
121(1)
6.2.2 Cross-Correlation Properties of Orthogonal Codes
122(1)
6.2.3 Error control Properties of Orthogonal Codes
123(1)
6.3 Multiple User PDMA
124(4)
6.3.1 Construction of PDMA2
124(2)
6.3.2 Construction of PDMA4
126(1)
6.3.3 Hybrid TDMA-PDMA Structure
127(1)
6.4 Ber Performance Analysis
128(3)
6.5 Conclusions
131(2)
References
132(1)
Appendix A 133(8)
Appendix B 141