Atjaunināt sīkdatņu piekrišanu

E-grāmata: RAFT Polymerization: Methods, Synthesis, and Applications

Edited by (University of Adelaide, Australia), Edited by (University of New South Wales, Australia; University of Sydney, Australia)
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Oct-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527821341
  • Formāts - PDF+DRM
  • Cena: 431,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Oct-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527821341

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Explore this one-stop resource for reversible addition-fragmentation chain transfer polymerization from a leading voice in chemistry 

RAFT Polymerization: Methods, Synthesis and Applications delivers a comprehensive and insightful analysis of reversible addition-fragmentation chain transfer polymerization (RAFT) and its applications to fields as diverse as material science, industrial chemistry, and medicine. This one-stop resource offers readers a detailed synopsis of the current state of RAFT polymerization.  

This text will inspire further research and continue the drive to an ever-increasing range of applications by synthesizing and explaining the more central existing literature on RAFT polymerization. It contains a beginner’s guide on how to do a RAFT polymerization before moving on to much more advanced techniques and concepts, like the kinetics and mechanisms of the RAFT process. The distinguished editors have also included resources covering the four major classes of RAFT agents and recent developments in processes for initiating RAFT polymerization. Readers will also benefit from the inclusion of: 

  • A thorough introduction to the mechanisms, theory, and mathematical modeling of RAFT 
  • Explorations of RAFT agent design and synthesis, dithioesters, dithiobenzoates, trithiocarbonates, xanthates, dithiocarbamates, macromonomer RAFT, and RAFT copolymerization 
  • Discussions of a variety of RAFT architectures, including multiblocks, combs, hyperbranched polymers, and stars 
  • Treatments of end group transformation, cationic RAFT, high-throughput RAFT, and RAFT in continuous flow 
  • An examination of sequence defined polymers by RAFT 

Perfect for organic chemists, polymer chemists, and materials scientists, RAFT Polymerization: Methods, Synthesis and Applications will also earn a place in the libraries of chemical engineers seeking a one-stop reference for this method of controlled radical polymerization with a wide range of applications in multiple areas. 

 

Volume 1
Preface xv
Acknowledgements xvii
1 Overview of RAFT Polymerization
1(4)
Graeme Moad
Ezio Rizzardo
References
5(10)
2 Terminology in Reversible Deactivation Radical Polymerization (RDRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization
15(10)
Graeme Moad
2.1 Terminology for Reversible Deactivation Radical Polymerization (RDRP)
15(3)
2.2 Terminology in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization
18(6)
2.3 Terminology That Is Not Ratified by IUPAC
24(1)
References
24(1)
3 How to Do a RAFT Polymerization
25(34)
Almar Postma
Melissa Skidmore
3.1 Introduction
25(4)
3.2 IP Landscape
29(1)
3.3 General Experimental Conditions
29(4)
3.3.1 Initiator
32(1)
3.3.2 Solvent
32(1)
3.3.3 Temperature
32(1)
3.3.4 Pressure
33(1)
3.4 RAFT Polymerization of Styrene
33(4)
3.4.1 Experimental Procedures for the RAFT Polymerization of Styrene
34(3)
3.5 RAFT Polymerization of Methacrylates and Acrylates
37(6)
3.5.1 Methacrylates
38(1)
3.5.2 Acrylates
38(1)
3.5.3 Experimental Procedures for the RAFT Polymerization of Methacrylates
39(2)
3.5.4 Experimental Procedures for the RAFT Polymerization of Acrylates
41(2)
3.6 RAFT Polymerization of Acrylamides and Methacrylamides
43(3)
3.6.1 Methacrylamides
44(1)
3.6.2 Acrylamides
44(1)
3.6.3 Experimental Procedures for the RAFT Polymerization of Acrylamides and Methacrylamides
45(1)
3.7 RAFT Polymerization of Vinyl Esters and Vinyl Amides
46(2)
3.7.1 Experimental Procedures for the RAFT Polymerization of Vinyl Esters and Vinyl Amides
47(1)
3.8 Copolymers
48(2)
3.8.1 Experimental Procedures for RAFT Copolymers
49(1)
3.9 Block Copolymers
50(3)
3.9.1 Experimental Procedures for RAFT Block Copolymers
51(2)
3.10 Conclusion
53(1)
References
54(5)
4 Kinetics and Mechanism of RAFT Polymerizations
59(36)
Michael Buback
4.1 Introduction
59(1)
4.2 Ideal RAFT Polymerization Kinetics
60(1)
4.3 Pulsed Laser Experiments in Conjunction with EPR Detection
61(4)
4.4 Quantum Chemical Calculations of the RAFT Equilibrium
65(1)
4.5 Xanthate-, Trithiocarbonate- and Dithiobenzoate-Mediated Polymerizations
66(23)
4.5.1 General Aspects of Actual RAFT Polymerizations
66(3)
4.5.2 Xanthates
69(3)
4.5.3 Trithiocarbonates
72(4)
4.5.4 Dithiobenzoates
76(1)
4.5.5 The `Missing Step' Reaction
77(8)
4.5.6 Kinetic Analysis of Dithiobenzoate-Mediated BA Polymerizations
85(2)
4.5.7 Quantum Chemical Calculations for the CIP* -- CPDB Model System
87(1)
4.5.8 Dithiobenzoate-Mediated MMA Polymerizations and Model Systems
88(1)
4.6 Summary of Results and Concluding Remarks
89(2)
References
91(4)
5 RAFT Polymerization: Mechanistic Considerations
95(44)
John F. Quinn
Graeme Moad
Christopher Barner-Kowollik
5.1 Introduction
95(1)
5.2 Role of the R Group
96(16)
5.2.1 Chain Transfer and Leaving Group Ability
96(1)
5.2.2 Measurement of the Chain Transfer Constant
97(6)
5.2.3 Mechanistic Implications for Block Copolymer Synthesis
103(2)
5.2.4 Re-Initiation and Initialization
105(4)
5.2.5 R Group Stability and Implications for Chain Transfer Kinetics
109(1)
5.2.6 Differential Leaving Group Ability and Mechanistic Discrimination
109(3)
5.3 Role of the Z Group
112(18)
5.3.1 The Z Group and Radical Addition to the Thiocarbonyl
112(2)
5.3.2 The Z-Group and Side Reactions
114(2)
5.3.3 Manipulating Z to Dictate Reactivity: `Switchable' RAFT Agents
116(2)
5.3.4 The Z-Group and Reaction Kinetics
118(1)
5.3.5 Intermediate Radical Termination
119(4)
5.3.6 Slow Fragmentation of the Intermediate Radical
123(3)
5.3.7 Stability of the Z Group During Reaction
126(4)
5.4 Light Effects on the Rate of Polymerization
130(1)
5.5 Conclusion
131(1)
References
132(7)
6 Quantum Chemical Studies of RAFT Polymerization
139(48)
Michelle L. Coote
6.1 Introduction
139(1)
6.2 Methodology
140(12)
6.2.1 Electronic Structure Calculations
140(3)
6.2.2 Kinetics and Thermodynamics
143(4)
6.2.3 Solvent Effects
147(1)
6.2.4 Accuracy and Outstanding Challenges
147(5)
6.3 Computational Modelling of RAFT Kinetics
152(15)
6.3.1 Simplified Models for Theory and Experiment
153(3)
6.3.2 Side Reactions
156(3)
6.3.3 Computational Model Predictions
159(6)
6.3.4 Ab initio Kinetic Modelling
165(2)
6.4 Structure-Reactivity Studies
167(13)
6.4.1 Fundamental Aspects
167(4)
6.4.2 Structure-Reactivity in Practical RAFT Systems
171(5)
6.4.3 RAFT Agent Design
176(4)
6.5 Outlook
180(1)
Abbreviations
180(1)
References
181(6)
7 Mathematical Modelling of RAFT Polymerization
187(36)
Porfirio Lopez-Dominguez
Ivan Zapata-Gonzalez
Enrique Saldivar-Guerra
Eduardo Vivaldo-Lima
7.1 Introduction
187(1)
7.2 Deterministic Modelling Techniques (DMTs)
188(16)
7.2.1 Method of Moments (MM)
188(2)
7.2.1.1 Homogeneous Systems
190(4)
7.2.1.2 Heterogeneous Systems
194(2)
7.2.2 Diffusion-Controlled or CL-Dependent Coefficients
196(2)
7.2.3 Calculation of Full Molecular Weight Distributions
198(1)
7.2.3.1 Explicit Integration Methods
199(2)
7.2.3.2 Probability-Generating Function
201(1)
7.2.3.3 Calculations Using the Predici® Software
201(3)
7.3 Stochastic Modelling Techniques (SMTs)
204(2)
7.3.1 Monte Carlo
204(1)
7.3.1.1 Homogeneous Systems
205(1)
7.3.1.2 Heterogeneous Systems
205(1)
7.4 Hybrid Methods
206(1)
7.5 Specific or Novel Polymerization Processes
206(5)
7.5.1 Semibatch Polymerization
206(2)
7.5.2 Polymerizations in CSTRs/PFR
208(1)
7.5.3 Branched Copolymerizations
209(1)
7.5.4 Microwave-Assisted (MA) RAFT Polymerization
210(1)
7.6 Closing Remarks
211(1)
Acknowledgments
212(1)
References
212(11)
8 Dithioesters in RAFT Polymerization
223(136)
Graeme Moad
8.1 Introduction
223(1)
8.2 Mechanism of RAFT Polymerization with Dithioester Mediators
224(6)
8.2.1 Transfer Coefficients of Dithioesters
226(4)
8.2.2 RAFT Equilibrium Coefficients with Dithioesters
230(1)
8.3 Choice of RAFT Agents
230(7)
8.3.1 Aromatic Dithioesters (Z = Aryl or Heteroaryl)
233(2)
8.3.2 Functional Aromatic Dithioesters (Z = Aryl or Heteroaryl)
235(1)
8.3.3 Bis-aromatic Dithioesters (Z = Aryl or Heteroaryl)
235(1)
8.3.4 Aliphatic Dithioesters (Z = Alkyl or Aralkyl)
236(1)
8.3.5 Bis-aliphatic Dithioesters (Z = Alkyl or Aralkyl)
237(1)
8.4 Synthesis of Dithioester RAFT Agents
237(2)
8.5 Monomers for Dithioester-Mediated RAFT Polymerization
239(48)
8.5.1 1,1-Disubsituted Monomers
239(1)
8.5.1.1 Methacrylates
239(1)
8.5.1.2 Methacrylamides
240(1)
8.5.1.3 Other 1,1-Disubsituted Monomers
240(1)
8.5.2 Monosubstituted MAMs
240(1)
8.5.2.1 Acrylates
240(33)
8.5.2.2 Acrylamides
273(2)
8.5.2.3 Styrenics
275(3)
8.5.2.4 Diene Monomers
278(1)
8.5.3 1,2-Disubstituted MAMs
279(1)
8.5.4 Monosubstituted IAMs and LAMs
279(1)
8.5.5 Monomers with Reactive Functionality
279(1)
8.5.6 Macromonomers
280(7)
8.6 Cyclopolymerization
287(1)
8.7 Ring-Opening Polymerization
287(1)
8.8 RAFT Crosslinking Polymerization
288(4)
8.9 RAFT Self-condensing Vinyl Polymerization
292(1)
8.10 RAFT-Single-Unit Monomer Insertion (RAFT-SUMI) into Dithioesters
292(3)
8.11 Dithioesters in Mechanism-Transformation Processes
295(3)
8.11.1 Ring-Opening Polymerization (ROP)
295(1)
8.11.2 Ring-Opening Metathesis Polymerization (ROMP)
296(1)
8.11.3 Atom Transfer Radical Polymerization (ATRP)
296(1)
8.11.4 Nitroxide-Mediated Polymerization (NMP)
297(1)
8.12 Thermally Initiated RAFT Polymerization with Dithioesters
298(1)
8.13 Photoinitiated RAFT with Dithioesters
299(1)
8.14 Redox-Initiated RAFT with Dithioesters
300(1)
8.15 Reaction Conditions and Side Reactions of Dithioesters
300(1)
8.16 RAFT Emulsion/Miniemulsion Polymerization Mediated by Dithioesters
301(1)
8.17 Dithioester Group Removal/Transformation
302(11)
8.17.1 Dithioester Group Removal by Reaction with Nucleophiles
302(1)
8.17.2 Dithioester Group Removal by Radical-Induced Reactions
303(1)
8.17.2.1 Radical-Induced Coupling/Disproportionation
303(3)
8.17.2.2 Radical-Induced Reduction
306(1)
8.17.3 Dithioester Group Removal by Oxidation
306(3)
8.17.4 Dithioester Group Removal by Thermolysis
309(1)
8.17.5 Electrocyclic Reactions of Dithioesters
310(1)
8.17.6 Boronic Acid Cross-Coupling
311(1)
8.17.7 Conclusions and Outlook
311(2)
Abbreviations
313(5)
References
318(41)
9 Trithiocarbonates in RAFT Polymerization
359(134)
Graeme Moad
9.1 Introduction
359(1)
9.2 Mechanism of RAFT Polymerization with Trithiocarbonate Mediators
359(8)
9.2.1 Transfer Coefficients for Trithiocarbonates in RAFT Polymerization
362(5)
9.2.2 RAFT Equilibrium Coefficients for Trithiocarbonates
367(1)
9.3 Choice of Homolytic Leaving Group R for Trithiocarbonate RAFT Agents
367(3)
9.3.1 Homolytic Leaving Group `R' for 1,1-Disubsituted MAMs
368(1)
9.3.2 Homolytic Leaving Group `R' for Monosubstituted MAMs
369(1)
9.3.3 Homolytic Leaving Group `R' for IAMs and LAMs
369(1)
9.3.4 Macro-leaving Group `R' for Block Copolymer Synthesis
369(1)
9.4 Choice of Activating Group `Z' for Trithiocarbonate RAFT Agents
370(1)
9.5 Symmetric Trithiocarbonates
370(8)
9.5.1 Bis-trithiocarbonates
370(8)
9.6 Non-symmetric Trithiocarbonates
378(1)
9.7 Functional Trithiocarbonates
379(29)
9.8 Synthesis of Trithiocarbonates
408(1)
9.9 Polymer Syntheses with Trithiocarbonates
409(17)
9.9.1 Methacrylates
409(15)
9.9.2 Methacrylamides
424(1)
9.9.3 Other 1,1-Disubstituted Monomers
424(1)
9.9.4 Acrylates
424(1)
9.9.5 Acrylamides
424(1)
9.9.6 Styrenics
425(1)
9.9.7 Diene Monomers
425(1)
9.9.8 Other Monosubstituted Monomers (MAMs, IAMs, LAMs), Vinyl Monomers
425(1)
9.9.9 Monomers with Reactive Functionality
426(1)
9.10 Macromonomers
426(1)
9.11 Cyclopolymerization
426(2)
9.12 Radical Ring-Opening Polymerization
428(1)
9.13 RAFT Crosslinking Polymerization
428(2)
9.14 RAFT Self-condensing Vinyl Polymerization
430(1)
9.15 RAFT-Single-Unit Monomer Insertion (RAFT-SUMI) into Trithiocarbonates
430(3)
9.16 Trithiocarbonates in Mechanism Transformation Processes
433(3)
9.16.1 Ring-Opening Polymerization (ROP)
434(1)
9.16.2 Ring-Opening Metathesis Polymerization (ROMP)
434(1)
9.16.3 Ring-Opening Opening Alkyne Metathesis Polymerization (ROAMP)
435(1)
9.16.4 Cationic Polymerization
435(1)
9.16.5 Anionic Polymerization
435(1)
9.16.6 Nitroxide Mediated Polymerization (NMP)
435(1)
9.16.7 Atom Transfer Radical Polymerization (ATRP)
435(1)
9.17 Photoinitiated RAFT with Trithiocarbonates
436(1)
9.18 Redox-Initiated RAFT with Trithiocarbonates
436(1)
9.19 RAFT Emulsion/Miniemulsion/Dispersion Polymerization Mediated by Trithiocarbonates
437(1)
9.20 Reaction Conditions and Side Reactions of Trithiocarbonates
438(1)
9.21 Trithiocarbonate Group Removal/Transformation
439(7)
9.21.1 Trithiocarbonate Group Removal by Radical-Induced Coupling
439(3)
9.21.2 Trithiocarbonate Group Removal by Radical-Induced Disproportionation
442(1)
9.21.3 Trithiocarbonate Group Removal by Radical-Induced Reduction
443(1)
9.21.4 Trithiocarbonate Group Removal by Reaction with Nucleophiles
444(1)
9.21.5 Trithiocarbonate Group Removal by Thermolysis
444(2)
9.21.6 Trithiocarbonate Group Removal by Oxidation
446(1)
9.22 Conclusions and Outlook
446(1)
Abbreviations
447(5)
References
452(41)
10 Xanthates in RAFT Polymerization
493(56)
Mingxi Wang
Jean-Daniel Marty
Mathias Destarac
10.1 Introduction
493(1)
10.2 Synthesis of RAFT/MADIX Agents
493(11)
10.2.1 Reaction of a Xanthate Salt with an Alkylating Agent
500(1)
10.2.2 Reaction with Xanthogen Disulfides
500(1)
10.2.3 Xanthates Used as Precursors to Provide New Xanthates
500(4)
10.3 Experimental Conditions
504(3)
10.3.1 Initiation
504(1)
10.3.1.1 Thermal Initiators
504(1)
10.3.1.2 UV or Visible Light
504(1)
10.3.1.3 60Co γ-ray Irradiation
505(1)
10.3.1.4 Redox Initiation
505(1)
10.3.2 Polymerization Conditions
506(1)
10.3.2.1 High-Pressure Polymerization
506(1)
10.3.2.2 Heterogeneous Polymerizations
506(1)
10.4 Kinetics
507(1)
10.5 Monomers
508(6)
10.5.1 Styrenics
508(1)
10.5.2 Acrylates and Acrylamides
508(1)
10.5.3 Methacrylates
509(1)
10.5.4 Vinyl Esters
510(1)
10.5.5 S-Vinyl Monomers
510(1)
10.5.6 Vinyl Phosphonic Acid
511(1)
10.5.7 N-Vinyl Monomers
511(1)
10.5.8 Halo-olefins
512(1)
10.5.9 Ethylene
513(1)
10.5.10 Cyclic Ketene Acetals (CKAs)
513(1)
10.5.11 Diallyl Monomers
514(1)
10.6 Macromolecular Architectures
514(11)
10.6.1 End-Functional Homopolymers/Statistical Copolymers
515(1)
10.6.2 Block Copolymers
516(3)
10.6.3 Gradient Copolymers
519(1)
10.6.4 Cyclic Copolymers
519(1)
10.6.5 Graft/Comb/Brush Copolymers
520(1)
10.6.6 Star Polymers
521(3)
10.6.7 Hyperbranched Polymers/Polymer Gels
524(1)
10.7 Methodologies for Xanthate End-Group Removal
525(4)
10.7.1 Nucleophilic Reaction (Aminolysis/Hydrolysis/Ionic Reduction)
525(1)
10.7.2 Oxidation
526(1)
10.7.3 Thermolysis
527(1)
10.7.4 Radical-Induced Reduction
528(1)
10.8 Industrial Applications of RAFT/MADIX Polymerization
529(1)
10.9 Conclusion
530(1)
References
531(18)
11 Dithiocarbamates in RAFT Polymerization
549(62)
Graeme Moad
11.1 Introduction
549(3)
11.2 Dithiocarbamate Transfer Constants
552(2)
11.3 Dithiocarbamates and RAFT Polymerization
554(1)
11.4 Monomers for RAFT Polymerization
555(20)
11.4.1 1,1-Disubstituted MAMs (Methacrylates)
555(17)
11.4.2 Monosubstituted MAMs (Acrylates, Acrylamides, Styrenes)
572(1)
11.4.3 LAMs, IAMs (Vinyl Monomers)
572(3)
11.5 Synthesis of Dithiocarbamate RAFT Agents
575(5)
11.5.1 Method A -- Reaction of a Carbodithioate Anion with an Alkylating Agent
575(2)
11.5.2 Method B -- Reaction of a Dithiochloroformate or a Thiocarbonyl-bis-imidazole with a Nucleophile
577(1)
11.5.3 Method C -- Addition of a Dithioic Acid Across an Olefinic Double Bond
578(1)
11.5.4 Method D -- Radical-induced Decomposition of a Thiuram Disulfide
578(2)
11.5.5 Method E -- Ketoform Reaction
580(1)
11.5.6 Method F -- Other Methods
580(1)
11.5.7 Method G -- Commercially Available
580(1)
11.6 Activity of Dithiocarbamate RAFT Agents
580(7)
11.6.1 Dithiocarbamate RAFT Agents with Balanced Activity
582(1)
11.6.2 Switchable Dithiocarbamate RAFT Agents
583(2)
11.6.3 Dithiocarbamates as Mediators of Cationic Polymerization
585(1)
11.6.4 Dithiocarbamate R Substituents
585(1)
11.6.5 Prediction of Dithiocarbamate Activity
585(2)
11.7 Dithiocarbamates in RAFT Emulsion Polymerization
587(1)
11.8 Dithiocarbamates in Mechanism-Transformation Processes
587(1)
11.8.1 Ring-Opening Polymerization (ROP)
587(1)
11.8.2 Ring-Opening Metathesis Polymerization (ROMP)
587(1)
11.8.3 Atom Transfer Radical Polymerization (ATRP)
588(1)
11.9 Dithiocarbamate Group Removal/Transformation
588(3)
11.9.1 Dithiocarbamate Group Removal by Radical-Induced Coupling
588(1)
11.9.2 Dithiocarbamate Group Removal by Radical-Induced Disproportionation
588(1)
11.9.3 Dithiocarbamate Group Removal by Radical-Induced Reduction
589(1)
11.9.4 Dithiocarbamate Group Removal by Reaction with Nucleophiles
589(1)
11.9.5 Dithiocarbamate Group Removal by Thermolysis
590(1)
11.9.6 Dithiocarbamate Group Removal by Oxidation
591(1)
11.9.7 Dithiocarbamate Group Removal by Other Methods
591(1)
11.10 Dithiocarbamate Z'Z"NC(=S)S groups
591(2)
11.11 Conclusions
593(1)
Acknowledgements
593(1)
Abbreviations
593(2)
References
595(16)
12 Photo RAFT Polymerization
611(36)
Robert Chapman
Kenward Jung
Cyrille Boyer
12.1 Introduction
611(1)
12.2 Photoinitiation
612(1)
12.3 Photoiniferter Polymerizations
613(12)
12.3.1 Catalyst-Free Photoiniferter
614(3)
12.3.2 Photoredox Catalysis
617(1)
12.3.2.1 PET-RAFT with Ir/Ru
618(1)
12.3.2.2 PET-RAFT with Porphyrins
619(3)
12.3.2.3 Metal-Free Photocatalysts
622(3)
12.4 Applications
625(10)
12.4.1 Single Unit Monomer Insertion (SUMI)
625(3)
12.4.2 Wavelength Orthogonal Polymerization
628(1)
12.4.3 High-Throughput Polymer Libraries
629(4)
12.4.4 Hydrogels and 3D Printing
633(1)
12.4.5 Live Cell Graft Polymerizations
634(1)
12.5 Conclusions and Outlook
635(1)
References
636(11)
Volume 2
13 Redox-Initiated RAFT Polymerization and (Electro)chemical Activation of RAFT Agents
647(32)
Francesco Lorandi
Marco Fantin
Krzysztof Matyjaszewski
13.1 Introduction
647(1)
13.2 Redox Initiation
648(8)
13.3 Chemical Activation of RAFT Agents
656(4)
13.4 Electrochemical Activation of RAFT Agents
660(10)
13.4.1 Electrochemistry of RAFT Agents
661(4)
13.4.2 Direct and Mediated Electro-reduction of RAFT Agents
665(2)
13.4.2.1 Organic Mediators for cRAFT Polymerizations
667(1)
13.4.2.2 Activation of RAFT Agents via Electro-reduction of ATRP Catalysts
668(2)
13.5 Electro-reduction of Radical Initiators
670(3)
13.6 Conclusions and Perspectives
673(1)
Acknowledgement
673(1)
References
673(6)
14 Considerations for and Applications of Aqueous RAFT Polymerization
679(28)
Alexander W. Fortenberry
Charles L. McCormick
Adam E. Smith
14.1 Introduction
679(1)
14.2 Chain Transfer Agents
679(5)
14.2.1 Hydrolysis of the CTA
680(1)
14.2.2 Aminolysis
681(3)
14.3 Initiation
684(6)
14.3.1 Initiation via Azo-containing Species
684(1)
14.3.2 Photochemical Initiation
685(1)
14.3.2.1 Externally Initiated aRAFT Photopolymerization
685(1)
14.3.2.2 Initiator-Free aRAFT Photopolymerization
686(2)
14.3.2.3 PET-RAFT Photopolymerizations
688(2)
14.4 Deoxygenation Methods
690(6)
14.4.1 PET-RAFT
690(1)
14.4.2 Enzyme-Catalyzed Deoxygenation
691(1)
14.4.2.1 Initiation by Thermal Initiation
691(2)
14.4.2.2 Enzymatic Initiation Systems
693(3)
14.5 Polymerization-Induced Self-assembly
696(3)
14.6 Grafting from Biomolecules
699(2)
References
701(6)
15 RAFT-Mediated Polymerization-Induced Self-Assembly (PISA)
707(46)
Franck D'Agosto
Muriel Lansalot
Jutta Rieger
15.1 Introduction
707(2)
15.2 History/Origin of PISA
709(1)
15.3 PISA Process
710(6)
15.3.1 Emulsion, Dispersion, and Precipitation Polymerizations: The Reference Processes
710(2)
15.3.2 Main Parameters at Play for a Successful PISA at a Glance
712(1)
15.3.2.1 MacroRAFT Type
712(1)
15.3.2.2 Initiation in RAFT-PISA
712(1)
15.3.2.3 Chemical Nature of the Blocks
713(1)
15.3.3 PITSA, PICA, PIESA, and PIHSA: Different Acronyms However All Boiling Down to PISA
714(1)
15.3.4 PISA-Inspired Synthesis of Surfactant-Free Latexes
715(1)
15.4 Reactive/Functional Nano-objects
716(10)
15.4.1 Via the RAFT Agent: Functionalization of the a-End of the Shell Polymer
717(1)
15.4.2 Via the Solvophilic Block: Functionalization Along the Shell Polymer
718(1)
15.4.2.1 A Variety of Functions
718(1)
15.4.2.2 Surface Functionalization by Sugar Moieties and Amino Acids
719(1)
15.4.2.3 Fluorinated Shells
720(1)
15.4.2.4 PISA and CO2
721(1)
15.4.3 Via the Solvophobic Block: Core Functionalization
722(1)
15.4.3.1 Fluoroparticles
722(1)
15.4.3.2 Core-crosslinking
723(2)
15.4.3.3 Adding a Function Allowing Degradation of the Particle Core
725(1)
15.4.3.4 CO2-sensitive Particles
725(1)
15.5 Control over the Particle Morphology
726(12)
15.5.1 From Spherical to Anisotropic Block Copolymer Particles
726(2)
15.5.2 Main Parameters that Impact the Particle Morphology
728(1)
15.5.2.1 Varying the Molar Mass
729(1)
15.5.2.2 Varying the Chemical Nature of the Solvophobic Block
729(1)
15.5.2.3 Varying the Topology of the Shell or the Core
730(1)
15.5.2.4 Varying the Solvent Quality
731(1)
15.5.2.5 PISA in Aqueous Media: Varying pH and/or Ionic Strength
731(1)
15.5.2.6 Varying the Block Copolymer Architecture via the RAFT Agent
732(1)
15.5.3 Strategies to Stir Specific Morphologies
733(1)
15.5.3.1 Using PICA
733(1)
15.5.3.2 Using Mesogenic Monomers (PIHSA)
733(1)
15.5.3.3 Using Ionic Complexes (PIESA) and Hydrogen-Bonding Units
734(1)
15.5.3.4 Hierarchical Assembly Between Particles
735(1)
15.5.4 Post-polymerization Morphological Transitions/Chain Reorganization
735(1)
15.5.4.1 Temperature
735(1)
15.5.4.2 Ph
736(1)
15.5.4.3 `Reactive' Groups
736(1)
15.5.4.4 Light
737(1)
15.5.4.5 Oxygen
738(1)
15.6 Applications
738(2)
15.7 Conclusions
740(1)
Acknowledgements
741(1)
Abbreviations
741(1)
References
742(11)
16 RAFT-Functional End Groups: Installation and Transformation
753(52)
Andrew B. Lowe
Elena Dallerba
16.1 Introduction
753(4)
16.2 Functionalization and Transformation of RAFT Polymers via the R-group
757(5)
16.3 Thiocarbonylthio End Group Removal and Transformation
762(31)
16.3.1 Desulfurization of RAFT (Co)Polymers
763(1)
16.3.1.1 Thermolysis
763(2)
16.3.1.2 Radical-Mediated Reduction
765(1)
16.3.1.3 Addition--Fragmentation Coupling
766(2)
16.3.1.4 Radical-Induced Oxidation
768(1)
16.3.2 Heteroatom Diels--Alder Chemistry
769(3)
16.3.3 Generation and Application of Macromolecular Thiols
772(3)
16.3.3.1 Radical Thiol--Ene Reaction
775(1)
16.3.3.2 Radical Thiol--Yne Reaction
776(1)
16.3.3.3 Catalyzed Thiol-Michael Additions
777(3)
16.3.3.4 Thiol-Isocyanate Modification
780(2)
16.3.3.5 Thiol-Epoxy Ring Opening
782(1)
16.3.3.6 Thiol-Halo Substitution
783(4)
16.3.3.7 Disulfide Reactions
787(3)
16.3.3.8 Miscellaneous Examples of End Group Transformation and Applications
790(3)
16.4 Summary
793(1)
References
794(11)
17 Sequence-Encoded RAFT Oligomers and Polymers
805(24)
Joris J. Haven
Jeroen De Neve
Tanja Junkers
References
825(4)
18 Synthesis and Application of Reactive Polymers via RAFT Polymerization
829(44)
Martin Gauthier-Jaques
Hatice Mutlu
Heba Gaballa
Patrick Theato
18.1 Introduction
829(1)
18.2 N-Hydroxysuccinimide (NHS)
830(2)
18.3 Pentafluorophenyl (PFP) Ester and Its Derivatives
832(3)
18.4 p-Nitrophenyl Esters and Their Derivatives
835(1)
18.5 Miscellaneous Activated Ester Functional Group Transformations
836(1)
18.6 Acetone Oxime (AO)
836(1)
18.7 Salicylic Acid (SA)
837(1)
18.8 p-Dialkylsulfonium Phenoxy Ester (DASPE)
837(1)
18.9 1,1,1,3,33-Hexafluoroisopropanol(HFIP)
838(1)
18.10 Di(Boc)-Acrylamide (DBAm)
838(1)
18.11 Acyl Chloride
839(1)
18.12 AlkylHalide
839(1)
18.13 Trichlorotriazine (TCT)
840(1)
18.14 Isocyanate (NCO)
840(2)
18.15 Azlactone
842(1)
18.16 Anhydride
842(1)
18.17 Thiolactone
843(1)
18.18 Thiol Exchange (Disulphide)/Michael Addition/Thiol-Ene
843(1)
18.19 Epoxide
843(2)
18.20 Diels--Alder Cycloaddition
845(1)
18.21 Triazolinedione
845(1)
18.22 Carbonyl Groups and their Derivatives
846(1)
18.23 Copper-Catalysed Azide--Alkyne Cycloaddition (CuAAC)
847(1)
18.24 Strain-Promoted Azide--Alkyne Cycloaddition (SPAAC)
848(1)
18.25 Nitrone-- and Nitrile Oxide--Alkyne Cycloadditions (SPANOC/SPANC)
848(1)
18.26 Cross-coupling Reactions
848(1)
18.27 Boronic Acid/Diol Condensation
849(1)
18.28 Multicomponent Reactions (MCR)
849(1)
18.29 Metal-Ligand Coordination
850(1)
18.30 Bioapplications of Reactive Polymers
850(1)
18.31 Drug Delivery
851(4)
18.32 Bio-conjugation
855(4)
18.33 Surface/Particle Modification
859(5)
18.34 Conclusion and Outlook
864(1)
References
864(9)
19 RAFT Crosslinking Polymerization
873(60)
Patricia Perez-Salinas
Porfirio Lopez-Dominguez
Alberto Rosas-Aburto
Julio Cesar Hernandez-Ortiz
Eduardo Vivaldo-Lima
19.1 Introduction
873(2)
19.2 Structure and Characteristics of Polymer Networks
875(1)
19.3 RAFT Crosslinking Polymerization
876(22)
19.3.1 Synthesis Pathways to Obtain Polymer Networks
877(2)
19.3.2 RAFT Controllers Used in the Synthesis of Polymer Networks
879(19)
19.4 Synthesis of Polymer Networks by RAFT Copolymerization of Vinyl/Multivinyl Monomers in Supercritical Carbon Dioxide as Green Solvent
898(6)
19.5 Modelling of Polymer Network Formation
904(14)
19.5.1 Background on Modelling of Crosslinking and RAFT
906(1)
19.5.2 Trifunctional Polymer Molecule Modelling Approach
907(3)
19.5.3 Multifunctional Polymer Molecule Modelling Approach
910(5)
19.5.4 Kinetic Random Branching Theory (KRBT)
915(3)
19.6 Closing Remarks
918(1)
Acknowledgements
918(1)
References
918(15)
20 Complex Polymeric Architectures Synthesized through RAFT Polymerization
933(50)
Thomas G. Floyd
Satu Hakkinen
Matthias Hartlieb
Andrew Kerr
Sebastien Perrier
20.1 Introduction
933(1)
20.2 RAFT Synthesis of Block Copolymers
933(15)
20.2.1 Block Copolymer by Sequential Polymerization Steps
934(1)
20.2.1.1 Choice of CTA
935(2)
20.2.1.2 Block Order
937(1)
20.2.1.3 Polymer Livingness
938(3)
20.2.1.4 Initiation System
941(1)
20.2.1.5 Further Considerations
942(1)
20.2.1.6 Multiblock Copolymers
942(1)
20.2.2 Block Copolymers by Chain Extension of a Pre-functionalized MacroCTA
943(1)
20.2.3 Block Copolymers by Conjugation of Two Polymeric Chains
944(1)
20.2.3.1 Block Copolymer Synthesis Through Click Chemistry
945(2)
20.2.3.2 Supramolecular Block Copolymers
947(1)
20.2.4 General Guidelines
948(1)
20.3 Gradient Copolymers
948(1)
20.4 Cyclic Polymers
949(1)
20.5 Star-Shaped Polymers
950(6)
20.5.1 Methods to Produce Star-Shaped Copolymers
950(1)
20.5.1.1 Divergent Synthesis of Star (Co)Polymers
950(3)
20.5.1.2 Convergent Synthesis of Star Polymers by RAFT Polymerization
953(2)
20.5.2 Classification by Composition
955(1)
20.6 Graft Polymers
956(8)
20.6.1 Grafting Through
958(1)
20.6.2 Grafting Onto
959(1)
20.6.3 Grafting From
960(3)
20.6.4 General Guidelines
963(1)
20.7 Hyperbranched Polymers
964(4)
20.7.1 Self-condensing Vinyl Polymerization
964(2)
20.7.2 Copolymerization of Multifunctional Monomers
966(1)
20.7.3 Alternative Methods of Hyperbranched Synthesis
967(1)
20.7.4 General Guidelines
968(1)
20.8 Conclusion
968(1)
Acknowledgements
968(1)
References
969(14)
21 Star Polymers by RAFT Polymerization
983(34)
Stephanie Allison-Logan
Fatemeh Karimi
Mitchell D. Nothling
Greg G. Qiao
21.1 Star Polymers
983(2)
21.2 Synthesis of Star Polymers via RAFT Polymerization
985(17)
21.2.1 Core-first Approach
985(2)
21.2.1.1 Z-group Approach
987(1)
21.2.1.2 R-group Approach
988(3)
21.2.1.3 Developments in Synthesis
991(3)
21.2.2 Arm-first Approach
994(2)
21.2.2.1 Developments in Synthesis
996(6)
21.2.3 Grafting-to Approach
1002(1)
21.3 Application of Star polymers
1002(8)
21.3.1 Star Polymers in Biomedical Applications
1003(1)
21.3.2 Star Polymers in Other Applications
1004(2)
21.3.2.1 Emulsion Stabilization
1006(1)
21.3.2.2 Advanced Materials
1007(3)
21.4 Conclusion
1010(1)
References
1010(7)
22 Surface and Particle Modification via RAFT Polymerization: An Update
1017(34)
Julia Pribyl
Brian C. Benicewicz
22.1 Introduction
1017(3)
22.2 Complex Brush Architectures
1020(7)
22.3 Bioconjugation and Stimuli-responsive Polymer Brushes
1027(3)
22.4 Advanced Composites
1030(9)
22.5 Shaped Polymer-Grafted Particles
1039(3)
22.6 Conclusion
1042(1)
Acknowledgements
1042(1)
References
1043(8)
23 High-Throughput/High-Output Experimentation in RAFT Polymer Synthesis
1051(26)
Carlos Guerrero-Sanchez
Roberto Yanez-Macias
Miguel Rosales-Guzman
Marco A. De Jesus-Tellez
Claudia Pinon-Balderrama
Joris J. Haven
Graeme Moad
Tanja Junkers
Ulrich S. Schubert
23.1 Introduction
1051(1)
23.2 Fundamental Experimentation and Limitations of HT/HO-E in RAFT Polymer Synthesis
1052(1)
23.3 HT/HO-E Kinetic Investigations
1053(3)
23.4 Utilization of HT/HO-E for the RAFT Synthesis of Polymer Libraries
1056(3)
23.5 Applications of RAFT Polymer Libraries in Nanomedicine and Drug Delivery Systems
1059(6)
23.5.1 Applications of RAFT Polymer Libraries as Antimicrobial Agents
1064(1)
23.6 Conclusions
1065(2)
Abbreviations
1067(2)
Acknowledgements
1069(1)
References
1069(8)
24 An Industrial History of RAFT Polymerization
1077(94)
Graeme Moad
24.1 Introduction
1077(1)
24.2 Macromonomer RAFT Polymerization
1077(5)
24.3 Thiocarbonylthio-RAFT Polymerization
1082(59)
24.3.1 Development of RAFT Polymerization
1086(11)
24.3.2 RAFT Emulsion Polymerization
1097(40)
24.3.3 Synthesis of Stars and Nano- or Microgels by RAFT Polymerization
1137(1)
24.3.4 RAFT Applications
1137(1)
24.3.5 RAFT Thiocarbonylthio-End-Group Removal/Transformation
1137(4)
Abbreviations
1141(1)
References
1141(30)
25 Cationic RAFT Polymerization
1171(13)
Mineto Uchiyama
Kotaro Satoh
Masami Kamigaito
25.1 Introduction
1171(1)
25.2 Background and Overview of Cationic RAFT Polymerizations
1172(3)
25.2.1 Living Cationic Polymerization and Mechanism
1172(1)
25.2.2 Overview of Cationic RAFT Polymerizations and Comparison to Radical RAFT Polymerizations
1173(2)
25.3 Design of Cationic RAFT or DT Polymerizations
1175(9)
25.3.1 RAFT or DT Agents for Cationic Polymerizations
1175(4)
25.3.2 Initiators, Cationogens, or Catalysts for Cationic RAFT or DT Polymerizations
1179(3)
25.3.3 Monomers for Cationic RAFT or DT Polymerizations
1182(2)
25 A Design of Well-Defined Polymers by Cationic RAFT or DT Polymerizations
1184(11)
25.4.1 End-Functionalized Polymers
1184(1)
25.4.2 Block Copolymers
1185(4)
25.4.3 Star Polymers
1189(1)
25.5 Summary and Outlook for Cationic RAFT or DT Polymerizations
1190(1)
Abbreviations
1191(1)
References
1191(4)
Index 1195
Graeme Moad obtained his BSc (Hons, First Class, 1974) and PhD (1978) from the University of Adelaide in organic free radical chemistry. Between 1977 and 1979, he undertook post-doctoral research at Pennsylvania State University. He joined CSIRO in 1979 where he currently holds the position of CSIRO fellow. Dr Moad is (co)author of over 200 publications, co-inventor on 38 patent families (17 relate to RAFT) and co-author of the book The Chemistry of Radical Polymerization (3rd edition in preparation). His research interests lie in the fields of polymerization mechanisms, and polymer design and synthesis. In recognition of his work Dr Moad was awarded a CSIRO medal in 2003, the RACIs Battaerd-Jordan Polymer Medal in 2012, a Clunies Ross Award and a Thomson-Reuters' Citation Laureate in 2014, a Warwick University IAS Fellowship, a CSIRO Newton-Turner award and Thomson-Reuters' Highly Cited List in 2015 and the Australian Academy of Science's David Craig Medal for outstanding achievement in the field of Chemistry in 2020. In 2014 he was added to Clarivate Analytics' Hall of Citation Laureates. Dr Moad is currently also an adjunct professor at Monash University, and an honorary professor at the Beijing University of Chemical Technology. He is an Associate Member of the IUPAC Polymer Division and the Division representative on the International Committee for Terminology, Nomenclature and Standards (ICTNS). He is a Fellow of the Royal Australian Chemical Institute and the Australian Academy of Science.

Ezio Rizzardo holds a BSc with First Class Honours in Applied Chemistry from the University of New South Wales (1965) and a PhD in Organic Chemistry from the University of Sydney (1969). Following post-doctoral research in organic synthesis at Rice University (Houston), the Research Institute for Medicine and Chemistry (Boston), and the Australian National University (Canberra), he was appointed in 1976 at the Commonwealth Scientific and Industrial Research Organisation (Melbourne) to explore polymer chemistry. At CSIRO, he has led teams who have devised and developed, among others: radical trapping with nitroxides, nitroxide mediated polymerization (NMP), chain transfer by radical addition-fragmentation, and its reversible version, RAFT polymerization. In recognition of his many achievements, Dr Rizzardo has been awarded Australias highest scientific honour; the Prime Ministers Prize for Science, and the highest civic honour; Companion of the Order of Australia (AC). He is also a Fellow of Australias Scientific Academies (FAA, FTSE) and a Fellow of the Royal Society of London (FRS).