Atjaunināt sīkdatņu piekrišanu

E-grāmata: Random Matrices and Non-Commutative Probability

(Indian Statistical Institute, Kolkata)
  • Formāts: 286 pages
  • Izdošanas datums: 26-Oct-2021
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000458817
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 286 pages
  • Izdošanas datums: 26-Oct-2021
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000458817
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful.











Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability.











Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants.











Free cumulants are introduced through the Möbius function.











Free product probability spaces are constructed using free cumulants.











Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed.











Convergence of the empirical spectral distribution is discussed for symmetric matrices.











Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices.











Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices.











Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
  1. Classical independence, moments and cumulants.
    2. Non-commutative probability.
    3. Free independence.
    4. Convergence.
    5. Transforms.
    6. C* -probability space.
    7. Random matrices.
    8. Convergence of some important matrices.
    9. Joint convergence I: single pattern.
    10. Joint convergence II: multiple patterns.
    11. Asymptotic freeness of random matrices.
    12. Brown measure.
    13. Tying three loose ends.
Arup Bose is on the faculty of the Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India. He has research contributions in statistics, probability, economics and econometrics. He is a Fellow of the Institute of Mathematical Statistics (USA), and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award and holds a J.C.Bose National Fellowship. He has been on the editorial board of several journals. He has authored four books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), U-Statistics, Mm-Estimators and Resampling (with Snigdhansu Chatterjee) and Random Circulant Matrices (with Koushik Saha).