Atjaunināt sīkdatņu piekrišanu

E-grāmata: Random Walk, Brownian Motion, and Martingales

  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Mathematics 292
  • Izdošanas datums: 20-Sep-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030789398
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Graduate Texts in Mathematics 292
  • Izdošanas datums: 20-Sep-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030789398
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study.





Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the KolmogorovChentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theorythroughout.





Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.

Recenzijas

The present text does an outstanding job of presenting many complementary aspects of the subject in a unified and coherent way the subject matter and appreciation for the work of the authors in producing such an engaging and readable book. The authors suggest various models for graduate-level courses . There is a great deal in the book that will be interesting, stimulating, and enjoyable for readers with an interest in probability theory and stochiastic processes. (Andrew Wade, zbMATH 1489.60001, 2022)

Symbol Definition List xv
1 What Is a Stochastic Process?
1(16)
Exercises
15(2)
2 The Simple Random Walk I: Associated Boundary Value Distributions, Transience, and Recurrence
17(10)
Exercises
22(5)
3 The Simple Random Walk II: First Passage Times
27(14)
Exercises
37(4)
4 Multidimensional Random Walk
41(6)
Exercises
44(3)
5 The Poisson Process, Compound Poisson Process, and Poisson Random Field
47(14)
Exercises
56(5)
6 The Kolmogorov-Chentsov Theorem and Sample Path Regularity
61(10)
Exercises
68(3)
7 Random Walk, Brownian Motion, and the Strong Markov Property
71(28)
Exercises
93(6)
8 Coupling Methods for Markov Chains and the Renewal Theorem for Lattice Distributions
99(14)
Exercises
109(4)
9 Bienayme-Galton-Watson Simple Branching Process and Extinction
113(10)
Exercises
121(2)
10 Martingales: Definitions and Examples
123(12)
Exercises
132(3)
11 Optional Stopping of (Sub)Martingales
135(16)
Exercises
147(4)
12 The Upcrossings Inequality and (Sub)Martingale Convergence
151(12)
Exercises
161(2)
13 Continuous Parameter Martingales
163(10)
Exercises
171(2)
14 Growth of Supercritical Bienayme-Galton-Watson Simple Branching Processes
173(12)
Exercises
183(2)
15 Stochastic Calculus for Point Processes and a Martingale Characterization of the Poisson Process
185(6)
Exercises
190(1)
16 First Passage Time Distributions for Brownian Motion with Drift and a Local Limit Theorem
191(8)
Exercises
197(2)
17 The Functional Central Limit Theorem (FCLT)
199(16)
Exercises
211(4)
18 ArcSine Law Asymptotics
215(12)
Exercises
224(3)
19 Brownian Motion on the Half-Line: Absorption and Reflection
227(8)
Exercises
232(3)
20 The Brownian Bridge
235(8)
Exercises
240(3)
21 Special Topic: Branching Random Walk, Polymers, and Multiplicative Cascades
243(20)
Exercises
260(3)
22 Special Topic: Bienayme-Galton-Watson Simple Branching Process and Excursions
263(16)
Exercises
274(5)
23 Special Topic: The Geometric Random Walk and the Binomial Tree Model of Mathematical Finance
279(12)
Exercises
288(3)
24 Special Topic: Optimal Stopping Rules
291(14)
Exercises
301(4)
25 Special Topic: A Comprehensive Renewal Theory for General Random Walks
305(24)
Exercises
328(1)
26 Special Topic: Ruin Problems in Insurance
329(18)
Exercises
346(1)
27 Special Topic: Fractional Brownian Motion and/or Trends: The Hurst Effect
347(16)
Exercises
361(2)
28 Special Topic: Incompressible Navier-Stokes Equations and the Le Jan-Sznitman Cascade
363(16)
Exercises
376(3)
References 379(8)
Author Index 387(4)
Subject Index 391
Rabi Bhattacharya is Professor of Mathematics at The University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has made significant contributions to the theory and application of Markov processes, and more recently, nonparametric statistical inference on manifolds. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics.





Edward C. Waymire is Emeritus Professor of Mathematics at Oregon State University. He received a PhD in mathematics from the University of Arizona in the theory of interacting particle systems. His primary research concerns applications of probability and stochastic processes to problems of contemporary applied mathematics pertaining to various types of flows, dispersion, and random disorder. He is a former chief editor of the Annals of Applied Probability, and past president of the Bernoulli Society for Mathematical Statistics and Probability.





Both authors have co-authored numerous books, including A Basic Course in Probability Theory, which is an ideal companion to the current volume.