Atjaunināt sīkdatņu piekrišanu

E-grāmata: Rasch Measurement Theory Analysis in R

(University of Alabama, USA),
  • Formāts - EPUB+DRM
  • Cena: 73,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Rasch Measurement Theory Analysis in R provides researchers and practitioners with a step-by-step guide for conducting Rasch measurement theory analyses using R. It includes theoretical introductions to major Rasch measurement principles and techniques, demonstrations of analyses using several R packages that contain Rasch measurement functions, and sample interpretations of results.

Features:





Accessible to users with relatively little experience with R programming Reproducible data analysis examples that can be modified to accommodate users own data Accompanying e-book website with links to additional resources and R code updates as needed Features dichotomous and polytomous (rating scale) Rasch models that can be applied to data from a wide range of disciplines

This book is designed for graduate students, researchers, and practitioners across the social, health, and behavioral sciences who have a basic familiarity with Rasch measurement theory and with R. Readers will learn how to use existing R packages to conduct a variety of analyses related to Rasch measurement theory, including evaluating data for adherence to measurement requirements, applying the dichotomous, Rating Scale, Partial Credit, and Many-Facet Rasch models, examining data for evidence of differential item functioning, and considering potential interpretations of results from such analyses.

Recenzijas

Over 60 years ago, Georg Rasch introduced a fundamentally new way of viewing measurement theory into the social sciences. His approach to invariant measurement provides the opportunity to achieve sample-free calibration of items and item-free measurement of persons. His research remains the gold standard for developing psychometrically sound assessments. Stefanie A. Wind and Cheng Hua introduce Rasch's fundamental ideas to students, researchers, and practitioners using readily available software in R that facilitates the quest for invariant measurement. ­

-George Engelhard, University of Georgia

1 Introduction 2 Dichotomous Rasch Model 3 Evaluating the Quality of
Measures 4 Rating Scale Model 5 Partial Credit Model 6 Many Facet Rasch Model
7 Basics of Differential Item Functioning
Stefanie A. Wind is an Associate Professor of Educational Measurement at the University of Alabama. Her primary research interests include the exploration of methodological issues in the field of educational measurement, with emphases on methods related to rater-mediated assessments, rating scales, Rasch models, item response theory models, and nonparametric item response theory, as well as applications of these methods to substantive areas related to education.

Cheng Hua is a Ph.D. candidate in Educational Measurement program at the University of Alabama. His primary research interests include Rasch Measurement theory, advanced regression models, Bayesian statistics, and visual learning tools (such as Mind Maps and Concept Maps). He enjoys applying his psychometric and statistical skills to address real-world research questions through interdisciplinary collaborations.